Design-By-Contract in .NET

© 2003, Manfred Réatzmann
RATZMANN GmbH, Claudiusstr. 3, 10557 Berlin

mailto: m.raetzmann@raetzmann-gmbh.de

In vielen Programmiersprachen stehen ASSERT Anweisungen oder ahnliches zur
Verfligung mit denen sich die Eingangsbedingungen einer Funktion oder einer
Klassenmethode abprifen lassen. Im .NET Framework stehen daflir die beiden
Klassen Debug und Trace bereit, mit denen Design-By-Contract Konzepte realisiert
werden kdnnen. Dieser Artikel stellt das Design-By-Contract Konzept und dessen
Realisierung mit der Debug Klasse vor.

Dieser Artikel erschien erstmalig in Ausgabe 05.03 der Zeitschrift dot.net magazin

Das Konzept der automatischen Abpriifung von Vorbedingungen und Nachbedingungen einer
Methode sowie von Bedingungen, die fiir jedes Objekt einer Klasse immer gelten miissen, ist als
,Design-by-Contract™ aus der Sprache Eiffel bekannt. Dort ist es direkt in die Sprache integriert. Mit
dem Schliisselwort ,,require* wird zu Beginn einer Methode eine Liste von Ausdriicken eingeleitet, die
die Vorbedingungen (Preconditions) darstellen. Nach einem ,,ensure folgt am Ende der Methode eine
Liste von Ausdriicken mit den Nachbedingungen (Post conditions). Mit ,,invariant* lassen sich
zusitzlich Bedingungen fiir alle Objekte einer Klasse angeben, die immer wahr sein miissen
(Invariants). Der Eiffel Compiler stellt wahlweise sicher, dass alle Bedingungen, nur die
Vorbedingungen, Vor- und Nachbedingungen oder keiner dieser Ausdriicke ausgewertet werden. Eine
Beschreibung des ,,.Design-by-Contract™ Konzepts in Eiffel finden Sie unter [[SEDbC].

Permanenter Regressionstest

In den meisten Programmiersprachen lassen sich zumindest die Vorbedingungen ohne grofie Probleme
auswerten. Assert-Anweisungen oder simple If-Statements zu Beginn einer Methode stellen sicher, dass alle
Voraussetzungen fiir den Start der Methode vorliegen. Die Abpriifung der Vorbedingungen (die Default-
Einstellung beim Eiffel Compiler) reicht fiir viele Testzwecke aus. Wenn die Nachbedingungen einer Methode
bzw. die Invarianten der Klasse nicht stimmen, so féllt dies spatestens dann auf, wenn sie als Vorbedingungen
einer Folgemethode abgepriift werden. Ein sorgféltiges Abpriifen der Vorbedingungen aller Funktionen oder
Methoden kommt einem permanenten Regressionstest gleich. Testtreiber miissen dann nur noch dafiir sorgen,
dass alle zu testenden Funktionen aufgerufen werden. Die Riickgabewerte werden vom Testtreiber protokolliert
oder ausgeworfene Exceptions werden abgefangen. Mehr iiber Regressionstests und andere Testverfahren
finden Sie in [Rdtzmann2002].

Das Abpriifen von Vorbedingungen zu Beginn einer Funktion hat den angenehmen Nebeneffekt, dass die
Vorbedingungen der Funktion giiltig dokumentiert sind. Textliche Beschreibungen von Vorbedingungen in
Funktionsheadern oder als Constraints in einem Klassenmodell haben ndmlich die Eigenschaft, dass sie nach
einer Weile nicht mehr allzu zuverldssig sind. Wenn die Vorbedingungen iiber Asserts oder If-Anweisungen zu
Beginn der Funktion abgepriift werden, ist dies nicht nur Kommentar-Prosa sondern reales Programmverhalten —
und lesbar ist es zumindest flir Softwareentwickler immer noch.

Die .NET Debug Klasse
Die beiden Klassen Debug und Trace aus dem System.Diagnostics Namensraum unterscheiden sich im
wesentlichen darin, dass der Compiler Aufrufe von Methoden der Debug Klasse nur im Debug-Build erstellt. In



Release-Builds wird die Debug Klasse vom Compiler ignoriert. Fiir die 7race Klasse hingegen wird auch im
Release-Build Code erzeugt. Ansonsten stimmen beide Klassen in ihren 6ffentlichen Eigenschaften und
Methoden iiberein. Alle 6ffentlichen Eigenschaften und Methoden sind statisch, gehdren demnach zur Klasse
und nicht zu einer einzelnen Instanz. Da beide Klassen versiegelt sind (sealed) und keine Ableitungen davon
erzeugt werden konnen, gibt es auch keine geschiitzten Eigenschaften und Methoden.

Zum Abpriifen von Vorbedingungen, Nachbedingungen und invarianten Bedingungen entsprechend des
Design-By-Contract Konzepts benutzen wir im Folgenden die Debug.Assert Methode. Diese Methode hat drei
Uberladungen, von denen wir hier die Variante public static void Assert(bool,string) benutzen.

Assert Anweisungen priifen einen booleschen Ausdruck ab und geben eine Meldung aus, wenn dieser
Ausdruck als FALSCH ausgewertet wird. Entsprechend kdnnen wir der Debug. Assert Methode einen booleschen
Ausdruck iibergeben und einen String, der als Meldung ausgegeben werden soll, wenn der Ausdruck als
FALSCH ausgewertet wird. Im Beispiel 1 priift der boolesche Ausdruck ab, dass die PrimaryKey Setzung eines
DataAccessObject ungleich dem Leerstring ist. Anderenfalls wird eine Meldung ausgegeben, die besagt, dass der
PrimaryKey nicht gesetzt ist.

Debug.Assert (DataAccessObject.PrimaryKey.Trim() != "",
"DataAccessObject.PrimaryKey nicht gesetzt!");

Beispiel 1: Aufruf der Debug.Assert Methode

Vorbedingungen

Priifen Sie mit Debug.Assert Aufrufen alle Vorbedingungen, die fiir die jeweilige Methode erfiillt sein
miissen. Mit ,,Vorbedingungen® ist jedoch nicht die Schnittstellendefinition (Signatur) der aufgerufenen
Methode gemeint. Die korrekte Ubergabe der Parameter an eine 6ffentliche Methode sollte nicht mit
Debug.Assert sondern mit if-~Anweisungen iiberpriift werden. Die Uberpriifung der iibergebenen Parameter
gehort zu den Pflichten einer jeden 6ffentlichen Methode und darf daher auch zur Laufzeit nicht auBer Kraft
gesetzt werden konnen, wie das bei Verwendung von Debug.Assert der Fall ist. Das gleiche gilt, wenn ein
Objekt zur Durchfiihrung einer bestimmten Methode in einem definierten Zustand sein muss. Wenn, als Beispiel,
ein Beleg vollstdndig erfasst sein muss, bevor er gedruckt werden kann, darf man dies beim Aufruf der drucken()
Methode nicht mit Debug.Assert abpriifen. Mit Debug. Assert priifen Sie den Zustand des Systems ab, der von
der Methode vorausgesetzt wird. Wenn das System bei Aufruf der Methode von diesem Zustand abweicht liegt
auf jeden Fall ein Programmfehler vor. Beispiel 2 zeigt den Unterschied noch einmal an einer konkreten
Situation auf.

public void saveBusinessObject (BusinessObject BO)
{
if (BO == null)
throw new ArgumentNullException ("Business Object darf nicht null sein!");

Debug.Assert (DataAccessObject != null, "DataAccessObject ist null!");
DataAccessObject.save (BO) ;

Beispiel 2: Unterschiedliche Nutzung von Assert und if

Die Methode in Beispiel 2 erwartet einen Parameter vom Typ BusinessObject, der nicht null sein soll. Diese
Bedingung, die zur Schnittstellendefinition der Methode gehort, wird mit einem if-Statement abgepriift. Im
Fehlerfall wird eine Exception ausgeworfen, auf die das aufrufende Programm reagieren muss. Damit die
Methode problemlos ihre Aufgabe erfiillen kann, ist sie darauf angewiesen, dass das spater benutzte
DataAccessObject tatsachlich existiert und die Referenz darauf nicht nu/l ist. Diese Bedingung gehdrt zu den
Vorbedingungen der Methode und wird tiber Debug. Assert abgepriift.

Vorbedingungen priifen, heif3t, alles abzupriifen, was eine Funktion zum Leben braucht. Es heif3t jedoch
nicht, die Plausibilitit von Setzungen zu tiberpriifen! Beispiel 3 zeigt die set- und get-Accessor Methoden der
Eigenschaft DataAccessObject aus Beispiel 2.



public DataAccessBase DataAccessObject
{

get {return DataAccessObject;}

set {_DataAccessObject = value;}

}
Beispiel 3: get- und set-Accessoren des DataAccessObject

Im set-Accessor wird absichtlich nicht gepriift, ob value eventuell null ist. Das heif3t, die Eigenschaft
DataAccessObject darf — aus welchen Griinden auch immer — zwischenzeitlich durchaus einmal auf null gesetzt
werden. Eine Methode jedoch, die mit dem DataAccessObject arbeiten will, muss die Existenz eines solchen als
eine ihrer Vorbedingungen abpriifen.

Nachbedingungen

Bei der Abpriifung von Nachbedingungen wird nicht mit if sondern immer Debug. Assert gearbeitet.
Wihrend eine Methode die korrekte Parameteriibergabe immer abpriifen sollte, ist ein korrekter Riickgabewert
oder genereller die Einhaltung der definierten Nachbedingungen ja der eigentliche Sinn der Methode. Alles, was
davon abweicht, kann nur ein Programmfehler sein. Abpriifung der Nachbedingungen sind demnach immer
eingebettete Tests, die nicht zur eigentlichen Aufgabe der Methode gehoren. Solche Tests sollten in Release-
Builds entfernt werden um die Performance nicht zu beeintrachtigen. Voraussetzung dafiir ist natiirlich, dass nur
ein ausreichend getester Sourcecode fiir Release-Builds freigegeben wird. So sollten zum Beispiel die Pfade, die
sich aus den moglichen Zustandsiibergéngen des Objektes ergeben, zu 100% durch entsprechende Testfélle
abgedeckt sein. Mehr iiber die zustandsbasierte Pfadabdeckung und andere Testabdeckungsgrofen finden Sie in
[Ridtzmann2002].

Nachbedingungen werden vor dem Riicksprung aus der Methode abgepriift. Wenn die Methode einen
berechneten Wert zuriick liefert, kann die Priifung eventuell iiber eine Riickrechnung erfolgen. Bei einer
Dateninderung kann eventuell der verdnderte Datenstatus {iber eine zweite Methode oder {iber einen
Kontrollzugriff tiberpriift werden. Beispiel 4 zeigt noch einmal die Methode aus Beispiel 2, diesmal jedoch
erginzt um die Abpriifung eine Nachbedingung.

public void saveBusinessObject (BusinessObject BO)

{

DataAccessObject.save (BO) ;
Debug.Assert (!BO.IsModified, "BusinessObject konnte nicht gespeichert werden!™)

}
Beispiel 4: Das erfolgreiche Speichern wird tiberpriift

Interne Invarianten

In einer Sourcecodestruktur gibt es hdufig Stellen, an denen eine Bedingung abgepriift wird, aber die
Alternativbedingung nicht. Wenn zum Beispiel aus der vorhergehenden Verarbeitung resultierend der Wert einer
Variablen i nur gleich 1 oder 2 sein kann, erfolgen haufig Verzweigungen iiber if* Statements wie:

if (1 == 1)
{
. Verarbeitung 2
}
else // 1 =2
{

. Verarbeitung 2

{
Beispiel 5a: Das i = 2 gilt wird vorausgesetzt

Die Tatsache, dass im else-Zweig immer i = 2 gelten sollte, nennt man eine interne Invariante der Methode.
Solche internen Invarianten lassen sich sehr einfach durch kurze Asserts abpriifen:



. Verarbeitung 1
}
else // 1 =2
}
Debug.Assert (i == 2,“Werletzung der Invariante i = 2%)
. Verarbeitung 2

{
Beispiel 5b: Interne Invariante wird abgepriift

Kontrollfluss Invarianten

Auf dhnlich einfache Art konnen eigene Annahmen iiber den Kontrollfluss im Programm abgesichert
werden. Statt die Annahmen zum Kontrollfluss lediglich als Kommentar zu hinterlegen (siehe Beispiel 6a)
schreibt man an diese Stelle besser ein Assert Statement wie in Beispiel 6b dargestellt.

void tuWas () {
for (..) {
if (L)
return;

}

// hier sollte das Programm nie hinkommen

}
Beispiel 6a: Kommentar zu Kontrollfluss

void tuWas () {
for (.) f
if (L)
return;

}

Debug.Assert (false,"Hier sollte das Programm nie hin geraten");

}
Beispiel 6b: Kontrollfluss wird iiberpriift

Allerdings kommt uns hier die VS.NET Entwicklungsumgebung etwas in die Quere. Bei der Erstellung
eines Programmteils mit der oben beschriebenen Abpriifung des Kontrollflusses gibt der C# Compiler die
Warnung aus, dass dieser Code nicht erreicht werden kann. (Der VB-Compiler schweigt sich zu diesem Thema
generell aus.) Solche Uberpriifungen durch den Compiler sind zwar sehr zu begriiien, im Fall der Debug Klasse
sollte der Compiler von dieser Regel aber eine Ausnahme machen, um eigene Kontrollflusspriifungen zu
ermdglichen (Verbesserungsvorschlag). Wenn im Beispiel 6a durch irgendwelche spéteren Anderungen an der
Sourcenstruktur das Programm némlich anfangt, falsche Wege zu gehen, gibt es keine Warnungen des

¢

Compilers. Unser Debug.Assert(false, “... ) wiirde diese UnregelmiBigkeit jedoch finden.

Leider steht nicht zu erwarten, dass mein Verbesserungsvorschlag kurzfristig realisiert wird. Deshalb
miissen wir zundchst mit dem Warnhinweis auf unerreichbaren Code leben oder das Debug. Assert Statement in
ein #if DEBUG ... #endif einkleiden. Dann wird zumindest der Release-Build diese Warnung nicht mehr

enthalten.

Klassen Invarianten

Klassen Invarianten sind Bedingungen, die fiir jedes Objekt einer Klasse zu jeder Zeit gelten miissen.
Klassen-Invarianten werden auBlerhalb Eiffel hdufig durch Priif-Methoden realisiert. Das sind Methoden der
Klasse, die keine Verarbeitungsfunktion haben sondern lediglich den aktuellen Status der Klasse tiberpriifen.
Eine solche Priif-Methode gibt am besten einfach ein frue zuriick, wenn alles in Ordnung ist, ansonsten ein false.

Eine Buchungs-Klasse, deren Objekte stets in sich ausgeglichen sein miissen (in welcher Art auch immer),
konnte diesen Zustand iiber ein entsprechende Priif-Methode kontrollieren:

// Gibt true zurick, falls ausgeglichen
private bool ausgeglichen()
{
. <Priifung der Ausgeglichenheit>
if (<Alles OK>)



return true;
else
return false;

}
Beispiel 7: Priifmethode

Diese Methode kann als Klassen-Invariante angesehen werden. Alle anderen Methoden kénnen durch ein
Debug.Assert(ausgeglichen(),”..."); vor und nach jeder Verarbeitung abpriifen, dass die invariante Bedingung
eingehalten wird. Die ausgeglichen()-Methode wird zwar nur in Debug-Builds benétigt, eine vom DEBUG Flag
bedingte Compilierung funktioniert aber leider nicht. Auch in Release-Builds wiirde ausgeglichen() vom
Compiler gesucht, selbst wenn die Zeile Debug. Assert(ausgeglichen(),”...") nicht mit in den IL Code compiliert
wird.

Nebeneffekte

Bei der Verwendung von Asserts muss unbedingt darauf geachtet werden, dass keine unbeabsichtigten
Nebeneffekte auftreten. So darf die Methode ausgeglichen() im Beispiel 7 auf keinen Fall etwas am Status der
Klasse andern. Wenn Asserts aus der Endfassung des Programms in der Laufzeitumgebung entfernt werden,
wirde ausgeglichen() nicht mehr ausgefiihrt und der Status der Klasse wire ein anderer als bei einem Durchlauf
in der Entwicklungsumgebung.

Manchmal werden Nebeneffekte aber auch bewuf3t herbeigefiihrt, wenn zum Beispiel ein Vergleichswert
fiir die Abpriifung einer Nachbedingung gebraucht wird, der ohne Asserts nicht mehr benétigt wird. Erstellen Sie
dazu — dhnlich wie bei den Priifmethoden weiter oben — eine Methode, die den Vergleichswert sichert. Diese
Methoden kann mit dem Attribut ,,Conditional* als optional gekennzeichnet werden. Voraussetzung dafiir ist,
dass die Methode nichts zuriick liefert. Optionale Methoden bleiben zwar im Code, werden aber nur aufgerufen,
wenn das hinter ,,Conditional* angegebene Flag gesetzt ist. In C# konnte das so etwa aussehen:

string TmpString;
[Conditional ("DEBUG") ]
private void tmpCopy(string s)
{
TmpString = s;
return true;

public void tuWas ()
{
string MyString;
MyString = "irgendwas";
// String sichern (optional bei DEBRUG)
tmpCopy (MyString) ;
// weiltere Verarbeitung ...

MyString = "was anderes";
// Vergleich mit dem gesicherten String
Debug.Assert (MyString == TmpString,"MyString wurde veradndert!");

}
Beispiel 8: Assert Anweisung mit Nebeneffekt

Das temporére Sichern des Strings in Beispiel 8 wird in einer optionalen Methode durchgefiihrt. Der
Compiler wird dann bei einem Release-Build die Methode tmpCopy() zwar mit libersetzen, aber nicht aufrufen
weil DEBUG dann nicht gesetzt ist.

Der Ernstfall
Was passiert denn nun aber wenn, wie in Beispiel 8, eine Behauptung (Assertion) nicht zutrifft? In diesem
Fall gibt die Debug Klasse eine Meldung aus, wie in Abbildung 1 dargestellt.



Assertionsfehler: Abbrechen=Beenden, Wiederholen=Debuggen, Ignorierer s X
6 MyString wurde verandert!

at Country.tuWas() c:\projekte\testapp\classl.cs(218)
at Classl.Main(String[] args) c:\projekie\testapp'classl.cs(52)

Abbrechen | Wiederﬂo[enl Ignoneren

Abb. 1: Meldung bei nicht zutreffender Bedingung

Abbildung 1 zeigt die Ausgabe der Debug Klasse bei Aufruf der Assert Methode mit einer nicht
zutreffenden Bedingung. Ausgegeben wird der gesamte Call-Stack, also nicht nur die Zeile, die die nicht
zutreffende Bedingung enthélt. Wie die Titelzeile des Meldungsfensters angibt konnen Sie an dieser Stelle das
Programm abbrechen, in den Debugger wechseln oder die nicht zutreffende Bedingung ignorieren. Insbesondere
der Wechsel in der Debugger bietet dem Entwickler in der Test & Tune Phase der Entwicklung eine wichtige
Analysemoglichkeit. Wenn irgendwo in Threm Programm etwas nicht stimmt haben Sie so die Chance,
unmittelbar darauf zu reagieren und die Situation im Debugger zu iiberpriifen. Voraussetzung dafiir ist
allerdings, dass Sie Ihr Programm mit der Debug.Assert Methode instrumentiert haben.

Wenn Sie Thre Unit Tests allerdings nicht manuell sondern automatisiert mit Hilfe eines Testframeworks
wie NUnit [NUnit] durchfiihren kann eine solche Ausgabe allerdings ziemlich stdrend sein. Vor allem dann,
wenn schon einiges an Tests zusammen gekommen ist und der Durchlauf eine Weile dauert. Dann sollte keine
Messagebox am Schirm erscheinen, die mit einem Buttonclick quitiert werden muss. Vielmehr sollten alle
Meldungen protokolliert werden, aulerdem wére es schon, wenn beim Fehlschlagen einer Bedingung eine
spezifische Ausnahme (Exception) ausgeldst wird. Dann konnte man im GUI Fenster von NUnit (oder anderen
Testwerkzeugen) gleich erkennen, bei welchem Test eine Assertion fehlgeschlagen ist. Der Code in Beispiel 9
zeigt, was dafiir zu tun ist.

// 1. einen eigenen Tracelistener erstellen
public class myTracelListener : TextWriterTracelListener
{
public myTracelListener (FileStream Output): base (Output) {}
public override void Writeline (string Message)
{
base.Writeline (Message) ;
this.Flush{();
throw new ApplicationException ("Assertion failed: "+Message);

// 2. den DefaultTracelistener gegen den eigenen Tracelistener austauschen
FileStream Testout =

new FileStream("Testout.txt",FileMode.OpenOrCreate) ;
TextWriterTracelistener myWriter =

new myTraceListener (Testout);
Debug.Listeners.Remove (Debug.Listeners[0]) ;
Debug.Listeners.Add (myWriter) ;

Beispiel 9: einen eigenen TraceListener installieren

Die Zuhorer

Die Debug-Klasse und die Trace-Klasse haben eine Eigenschaft ,,Listeners® hinter der sich eine
TraceListenerCollection verbirgt. Alle dort eingetragenen Listener werden bei einer fehlschlagenden Assertion
mit der Meldung versorgt, die bei Debug.Assert(<Bedingung>,<Meldung>) angegeben wurde. Konkret heif3t
das, dass die WriteLine-Methode jedes Listener aufgerufen wird. Der Listener schreibt die Meldung dann
entweder in eine Textdatei oder einen Stream (TextWriterTraceListener), in ein Windows-Ereignisprotokoll



(EventLogTraceListener) oder in das Output Window von Visual Studio .NET (DefaultTraceListener). Ein
DefaultTraceListener gibt die Meldung einer fehlschlagenden Assertion zusétzlich zusammen mit der Aufruf-
Liste in einer Messagebox aus.

Wenn wir also unsere Assert-Meldungen in einer Textdatei protokollieren und statt der Messagebox-
Ausgabe eine Exception auswerfen wollen, miissen wir einen eigenen Listener schreiben und den vorhandenen
DefaultTraceListener gegen unseren eigenen Listener austauschen. In Beispiel 9 wird zunichst eine eigene
Listener-Klasse myTraceListener aus der TextWriterTraceListener Klasse abgeleitet. In Zeile 4 wird einer der
Konstruktoren tiberschrieben, damit wir spéter beim Erstellen eines myTraceListener-Objektes den FileStream
fiir die Ausgabe gleich mit {ibergeben kdnnen. AnschlieBend iiberschreiben wir noch die WriteLine-Methode
indem wir zunichst die WriteLine-Methode der Basisklasse aufrufen und die neue Zeile mit Flush() aus dem
internen Puffer in den Ausgabestrom schreiben. Danach wird dann die gewiinschte Exception ausgeworfen.

Irgendwo in der Initialisierung der Applikation wird dann der DefaultTraceListener gegen eine Instanz des
eigenen TraceListeners ausgetauscht. Dazu erstellen wir zundchst einen FileStream, der die Ausgabe in die Datei
,» Testout.txt* schreibt. Danach wird der neue TraceListener erstellt, wobei der FileStream gleich an den
Konstruktor {ibergeben wird. Als nachstes entfernen wir den DefaultTraceListener auf Position 0 der Listeners-
Collection und fligen unseren neuen Listener der Listeners-Collection hinzu. Das war’s — von nun an verhilt sich
Debug.Assert so wie wir das filir automatisierte Unit-Tests brauchen.

Zusammenfassung

Mit den Klassen Debug und Trace des NET Frameworks kdnnen in Debug- und wahlweise auch Release-
Builds alle Priifmoglichkeiten realisiert werden, die das Design-By-Contract Konzept vorsieht. Durch die
Moglichkeit, eigene Listener-Klassen zu erstellen, lassen sich solche eingebetteten Tests nahtlos in jede
Testumgebung integrieren. Insbesondere konnen auch eingebettete Tests genau auf die Bedingungen beim
automatisierten Unit-Test mit externen Testframeworks wie NUnit abgestimmt werden.

Literaturhinweise

[ISEDbC]

http://www.eiffel.com/doc/manuals/technology/contract/page.html

[NUnit]

http://nunit.org

[Ratzmann2002]

Manfred Ratzmann: Software-Testing, erschienen bei Galileo Computing, 2002, ISBN 3-89842-271-2




