Geschaftsobjekte und ADO.NET

© 2003, Manfred Ridtzmann
RATZMANN GmbH, Claudiusstr. 3, 10557 Berlin

mailto: m.raetzmann@raetzmann-gmbh.de

Teil 1: Geschaftsobjekte generell

Mit ADO.NET hat Microsoft alle technischen Voraussetzungen fiir die strikte Trennung von Oberfléche,
Verarbeitung und Datenhaltung geschaffen. Geschiftsobjekte (Business Objects) und Geschiftsobjekt-Manager
sind ein zentraler Bestandteil einer flexiblen Softwarearchitektur. Im ersten Teil dieses Artikels wird ein Design
Modell dafiir vorgestellt. Im zweiten Teil soll dieses Modell dann in C# realisiert werden. Dieser Text ist in
leicht abgewandelter Form als zweiteiliger Artikel ist in den Ausgaben 02.03 und 04.03 im ,,dot.net magazin®
erschienen.

Geschiftsobjekte - was ist das eigentlich und warum sind sie so wichtig? Ein Geschéftsobjekt reprasentiert ein
Ding (oder einen Vorgang) aus der realen Welt, fiir die unser Programm erstellt wird. Da Software héufig dazu
dient, Geschéftsprozesse zu automatisieren, hat sich der Ausdruck "Geschifts"-objekt oder Business Object
dafiir etabliert.

b
Kunde KRR Artikel
b

Marme Bestand
Adresse Freis
inffener Sakdo
I resditlirmit

erkal

Rech

echnung bbb Position

Mettosumme Atk

Eehnueﬂsmuar hMenge

Abb. 1: Ganz einfaches Modell mit Geschiaftsobjekten

In Abbildung 1 sehen Sie ein stark vereinfachtes Modell eines nicht uniiblichen Geschiftsumfelds. Die darin
enthaltenen Geschéftsobjekte sind "Kunde", "Artikel" und "Rechnung". Vor die Aufgabe gestellt, ein Programm
zu schreiben, das die Rechnungsstellung iibernimmt, wird sich mancher gestandene Entwickler nun vor seinen
Rechner setzen, sein Lieblingsentwicklungswerkzeug aufrufen, ein neues Projekt anlegen und wahrscheinlich
mit der Kundenstammverwaltung oder der Artikelstammverwaltung anfangen: Datenbanktabelle aufbauen,
neues Formular erstellen, datengebundene Steuerelemente rein, Button zum Navigieren, Speichern und Loschen
dazu, Click-Events ausprogrammiert - fertig! Vielleicht braucht das Formular noch die ein- oder andere
Methode aber im Prinzip funktioniert das so, oder?

Das Gute an Geschaftsobjekten

Geschiéftsobjekte ermoglichen es, das in der Analyse entwickelte Geschiftsmodell fiir die zu erstellende
Anwendung ohne Bruch zum Designmodell, Datenmodell und, wenn nétig, zum Implementationsmodell weiter
zu entwickeln. Aus dem Kunden im Geschéftsmodell wird die Klasse "Kunde" im Designmodell und im
Sourcecode. Ebenso werden wir ein Klasse "Artikel" und eine Klasse "Rechnung" im Sourcecode wiederfinden.

Geschiftsobjekte machen uns unabhéngig von der Oberflache. Der fiir die Anwendung wichtige Code steckt im
Geschiftsobjekt, nicht in einer einzelnen Windows- oder Web-Form. Ein einzelnes Geschéftsobjekt kann einen

Web-Service bereitstellen, eine Windows-Form bedienen oder von einem Batch-Prozess genutzt werden. So
kann die Oberfldche ausgetauscht werden ohne dass der Kern der Anwendung neu entwickelt werden miifite.

Fir Programmteile, die nicht mit der Benutzeroberfldche interagieren, lassen sich automatisierte Unit-Tests
aufbauen. Sobald die Benutzeroberfliche in's Spiel kommt wird die Testautomation erheblich schwieriger, wenn
nicht sogar unmdglich. Auch Integrationstests oder Systemtests fiir groflere Module und Subsysteme lassen sich
viel einfacher automatisieren, wenn auf eine strikte Trennung zwischen Oberfldche, Verarbeitung und
Datenhaltung geachtet wird wie in Abbildung 2 dargestellt.

(™)
zzubzystems L *E zzubsystems * zzubsystem:s
Oberflache 3 Yerarbeitung Datenhalung
= i
o tili
Testtool

Abb. 2: Adapter zur Steuerung und Aufzeichnung von Testablaufen

Geschiftsobjekte machen uns auch unabhéngig von der Datenhaltung. Durch Kapselung des Datenzugriffs in
gesonderten Zugriffsklassen kann das Programm bei der Installation auf verschiedene Datenbanken eingestellt
werden - einfach indem die Geschiftsobjekte fiir die Verwendung einer anderen Zugriffsklasse konfiguriert
werden. Wenn erforderlich kann ein Wechsel der Datenbank sogar zur Laufzeit erfolgen.

Zu guter Letzt helfen Geschiftsobjekte dabei, den Code der Anwendung besser zu organisieren. Die Trennung
von Oberflache, Verarbeitung und Datenhaltung bietet das notwendige Ordnungsprinzip, die Verwendung von
Geschiftsobjekten die logische Struktur.

Geschaftsobjekte und Daten

Wenn Sie Datenbankdesigner sind, werden Sie bei dem kleinen Geschdftsmodell oben vielleicht gleich an ein
Entity-Relationship Diagramm gedacht haben. In diesen Diagrammen werden Einheiten (Entitdten) aus dem
modellierten Bereich zueinander in Beziehung (Relationship) gesetzt. Entity-Relationship Diagramme werden
beim logischen Datenbankentwurf eingesetzt. Die Diagramme der Analysephase sind sehr hdufig ebenfalls
Entity-Relationship Diagramme, auch wenn sie in UML Notation als Klassendiagramme ausgefiihrt sind. Die
bei der Analyse bereits ermittelten Daten werden als Klassenattribute angegeben. Als Datenbankdesigner
werden Sie wenig Schwierigkeiten haben, das Geschiftsmodell oben in eine passende Tabellenstruktur
umzusetzen.

Doch das Datenmodell zeigt nur die halbe Wahrheit. Die Entitdten des geschéftlichen Umfelds werden nicht nur
durch ihre Attribute beschrieben - durch Daten also - sondern auch durch ihr Verhalten. Was liegt demnach
nédher als die in der Analyse gefundenen Geschiftsobjekte als Klassen zu realisieren, die ihre nicht fliichtigen
Daten in Datenbanktabellen ablegen? Das Verhalten der Geschéftsobjekte schldgt sich in den Methoden dieser
Klassen nieder.

Kunde

-Mame
FAdresse
offener Saldo
-Hreditlimit

Offener

D Marme Adresse Saldo

Freditlirmit

Abb. 3: Einfache Projektion von Klassen auf Tabellen

Die in Abbildung 3 dargestellte einfache Art der Projektion von Klassen auf Datenbanktabellen ist sicher nicht
immer und iiberall anwendbar, aber sie trigt schon sehr weit. Ein einzelner Datensatz entspricht dabei einem
Objekt der Klasse, ein Datenfeld im Datensatz entspricht einem nicht-flichtigen (persistenten) Attribut der
Klasse. Ein wenig aufwéndiger wird die Sache, wenn man Vererbungsstrukturen auf Tabellen abbilden muss.
Eine detaillierte Beschreibung der Vorgehensweise dabei finden Sie zum Beispiel unter [Ratzmann2000].

Zustandigkeiten verteilen

Unabhéngig von der Art der Datenhaltung vereinfachen Geschiftsobjekte beim Design das Verteilen von
Zustandigkeiten. Alles das, wofiir ein einzelnes Kundenobjekt zustidndig ist, zum Beispiel Ermittlung und
Riickgabe des Saldos seiner offenen Posten, wird als Methode des Geschiftsobjektes "Kunde" modelliert. Das
Geschiftsobjekt "Rechnung" ist zustindig fiir die Berechnung der Gesamtsumme und Ermittlung des
Mehrwertsteuerbetrages, das Geschiftsobjekt "Artikel" ist zustindig fiir die Reduzierung seines Bestands bei
einer Lieferung und so weiter und so fort. Mit Geschiftsobjekten "normalisieren" Sie quasi IThr Programm - auch
das eine Analogie zum Datenbankdesign. Beim Datenbankdesign entfernen Sie durch Normalisierung unnétige
und hinderliche Redundanzen. Beim Applikationsdesign vermeiden Sie redundanten Code durch die
Verwendung von Geschéftsobjekten, Geschéftsobjekt-Managern und Dienstanbietern. Eine Faustregel beim
Verteilen der Zustandigkeiten lautet:

1. Ein Geschiftsobjekt ist immer nur fiir sich selbst zustdndig, ein Kunden-Objekt kann also den Saldo der
eigenen offenen Posten ermitteln und auf Anforderung zuriick geben. Es kann jedoch keine Umsatzstatistik fiir
mehrere Kunden erstellen.

2. Alles, was mehrere Geschiftsobjekte des gleichen Typs betrifft, wird von den Geschéftsobjekt-Managern
erledigt. Der KundenManager ist somit zustandig fiir kundenbezogene Auswertungen oder Mengenoperationen
aber auch fiir das Erstellen neuer Kunden-Objekte, den Abruf gespeicherter Objekte und das Speichern
gednderter Objekte.

3. Was nicht ein einzelnes Geschiftsobjekt oder eine Menge von gleichartigen Geschiftsobjekten betrifft, ist
Sache eines spezialisierten Dienstanbieters. Ein Druckdienst-Anbieter konnte zum Beispiel seine Dienste allen
Geschiftsobjekten anbieten, die eine IDruckbar Schnittstelle haben.

BusinessObjectManager

DataAccessBase

nutzt ¥

picreateBusinessObyject() - BusinessObject
+oeBusinessObject(in 00 : ObjectiD) : BusinessObject ; . [tgetDataSetfin Command : Zeichenkette, in TableName ! Zaichenkette) - DataSet]
+newBusinessObject() | BusinessObjact +saveDatasef(in DataSet - DataSet) - int

+saveBusinessObject(in BusinessObject : BusinessObject) ﬁ}.

1
erzaligh b

DataAccessSAL| DataAccessOleDb

BursinessObject priift» :
+Data : DataRow] BusinessRuleSet

+zhew : Boolesch = TRUE

+isChanged : Boolesch = FALSE +addBusinessRule(in BusinessRule - BusinessRulz)

+isValid : Boplesch = TRUE i+oetBusinessRule(in Index) : BusinessRule
HRules | BusinessRuleSel

HValidationErrors : ValidationErrorList "
itvalidatel() : Boalesch bestehf aus »

verwest auf b

BusinessRule

ValidationErrorList

woreateValidationError() | ValidationError

ivalidatefin BusinessOhject : BusinassObject) - Boolesch
+checkRule(in BusinessObject ; BusinessObject) : Baolesch
+getValidationErron() | ValidationEsror

+addValidationError(in ValidationEmor : ValidationError)
+getValidationError(in Index ; Integer) : ValidationError

enthilt ¥

-

ValidationError
HhiessanelD ; Zeichenkette

+Detail : Zeichenketle
HHelplD : Zeichankatlle

Abb. 4: Designmodell Business Object Management

Ein Designmodell

Abbildung 4 zeigt ein mogliches Designmodell fiir Geschiftsobjekte, Geschéftsobjekt-Manager und weitere
bendtigte Hilfsklassen als Klassendiagramm in UML Notation. Dieses Modell erhebt nicht den Anspruch, das
einzig mogliche oder richtige Modell zu sein. Das Grundkonzept des Designmodells ist einfach: Der
Geschiftsobjekt-Manager (BusinessObjectManager) erzeugt die benotigten Geschiftsobjekte (BusinessObject)
und nutzt zum Zugriff auf die Datenbank separate Datenzugriffsobjekte (DataAccessSQL oder
DataAccessOleDB). Im Design Modell aus Abbildung 4 sind nur die 6ffentlichen Schnittstellen der einzelnen
Klassen aufgefiihrt. Interne Klassenelemente sind nicht dargestellt.

Die BusinessObjectManager Klasse ist eine abstrakte Klasse, das heif3t, aus dieser Klasse werden keine Objekte
erstellt. Aus der BusinessObjectManager Klasse werden die konkreten Managerklassen abgeleitet wie
KundenManager, ArtikelManager, RechnungsManager und so weiter. Das gleiche gilt fiir die BusinesObject
Klasse. Auch diese dient als abstrakte Basisklasse zur Ableitung der konkreten Klassen fiir Kunden, Artikel und
so weiter. Abbildung 5 zeigt dieses Ableitungsschema. Natiirlich beschrinken sich die konkreten Manager nicht
auf die drei ererbten Operationen. Sie sind, wie oben beschrieben, Sammelpunkt fiir alle Aktionen, die mehr als
ein Geschiftsobjekt des verwalteten Typs betreffen. Der KundenManager wére zum Beispiel fiir eine Operation
"erstelleUmsatzStatistik" zustdndig. Diese Operation konnte dann ein DataSet zuriick liefern, das von der
Benutzeroberflidche in Form eines Berichts oder einer Grafik ausgegeben wird.

erzeugt

IEusinessﬂhju:tMnmgw': -
AN
KundenManager
—|Rechnungsﬂﬂnager|
—|Pnslﬂonslulanagari

Abb. 5: Die abgeleiteten konkreten Klassen

BusinessObjectManager erzeugen BusinessObjects. KundenManager erzeugen Kunden-Objekte,
ArtikelManager erzeugen Artikel-Objekte und RechnungsManager erzeugen selbstverstandlich nur
RechnungsObjekte. Da die Basisklasse aller BusinessObjectManager nicht wissen kann, welcher konkrete
BusinessObject Typ durch ihren jeweiligen Abkommling letztendlich erzeugt werden soll, muss diese Frage
offen bleiben - sie kann erst durch die konkreten Manager selbst beantwortet werden. Das ist ein klassischer Fall
fiir das "Factory Method" Muster [Gamma95]. Die Operation createBusinessObject wird in der Basisklasse
lediglich deklariert, bleibt jedoch abstrakt. Die abgeleiteten Manager miissen die Methode ausformulieren, das
heiit den jeweils passenden BusinessObject Typ erstellen und zuriick liefern. Weitere Operationen der
BusinessObjectManager Klasse konnen dann die so erzeugten BusinessObjects verwenden.

Die "getBusinessObject” Operation erwartet eine ObjectID als Input Parameter und liefert das BusinessObject
mit dieser ID zuriick. ObjectIDs sind eindeutige Kennzeichner fiir Objekte. Sie entsprechen den
Primérschliisseln in der Datenbank. ObjectIDs sollten kiinstliche Schliissel sein. Natiirliche Schliissel wie zum
Beispiel die Kunden-Nummer oder die Artikel-Nummer eignen sich nicht als ObjectID. Um vollstindig
datenunabhéngig zu bleiben sollten auch nicht die Autonumber Felder der Datenbank verwendet werden. Am
besten erstellen Sie ObjectIDs als GUID (Global Unique ID), auch wenn Thnen das zunichst als
Platzvergeudung erscheinen mag. Mit GUIDs lassen sich verteilte Systeme einfach handhaben (zumindest, was
die ObjectlDs angeht) - wer weil3, ob aus Ihrem System nicht irgendwann auch ein verteiltes System wird.

"newBusinessObject" liefert ein leeres BusinessObject zuriick. Weil "newBusinessObject" dazu intern die
"createBusinessObject” Methode benutzt, wird natiirlich der richtige Typ zurlick geliefert (siche oben). Der
angegebene Riickgabetyp "BusinessObject" ist nur der kleinste gemeinsame Nenner und kann vom aufrufenden
Programm in den konkreten Typ umgewandelt werden.

Datenzugriff

Die "saveBusinessObject" Operation schlieBlich speichert das iibergebene BusinessObject wieder in der
Datenbank ab. Die BusinessObjectManager Klasse nutzt fiir alle Zugriffe auf die Datenbank ein
Datenzugriffsobjekt, das aus einer DataAccess Klasse erstellt wird. Alle DataAccess Klassen werden von
DataAccessBase abgeleitet. Die DataAccess Klassen sind datenbankspezifisch. Durch die Auslagerung des
eigentlichen Datenzugriffs in DataAccess Klassen kann die tatsdchlich benutzte Datenbank einfach
konfigurierbar gehalten werden. Wenn nétig konnte die Datenbank sogar zur Laufzeit einfach umgeschaltet
werden indem der BusinessObjectManager ein anderes DataAccess Objekt benutzt.

Die Kommunikation mit der Datenbank lduft im Wesentlichen iiber die Operationen "getDataSet" und
"saveDataSet" der DataAccess Klasse. Wenn ein einzelnes BusinessObject geladen oder gespeichert wird,
enthidlt der DataSet nur eine Tabelle mit einem Satz. Der BusinessObjectManager kann aber bei Bedarf auch
DataSets mit mehreren Tabellen und Datensétzen abrufen und als Ergebnis eigener Operationen zuriick liefern.
Die DataAccess Klassen- und Methodennamen in diesem Modell habe ich mit freundlicher Genehmigung des
Autors aus [McNeish02] iibernommen.

BusinessObjects besitzen eine Eigenschaft "Data". Hinter "Data" verbirgt sich ein DataRow Objekt, also eine
Zeile einer Tabelle aus einem DataSet. Uber einKunde.Data["Name"] kann man also auf den Namen des
Kunden-Objekts "einKunde" zugreifen, wenn der direkte Zugriff auf die "Data" Eigenschaft zugelassen wird.
Alternativ kann man die Attribute des Geschéftsobjektes wie "Name", Adresse" und so weiter als Eigenschaften
verdffentlichen und intern auf die Felder des DataRow Objektes zugreifen.

Der Status des BusinessObject kann iiber verschiedene boolesche Werte abgepriift werden. isNew gibt an, ob
das BusinessObject bereits in der Datenbank gespeichert ist (FALSE) oder nicht (TRUE), isChanged gibt an, ob

das BusinessObject seit dem Abruf aus der Datenbank hier gedndert wurde. isValid gibt zuriick, ob das
BusinesObjects in seinem aktuellen Zustand den hinterlegten Geschéftsregeln entspricht.

Geschaftsregeln uberpriifen

Zur Validierung wird von der BusinessObject Klasse eine geschiitzte "validate" Methode angeboten, die im
Original einfach ein TRUE zuriick gibt. Wenn es eine feststehende Menge von Geschiftsregeln gibt, denen das
BusinessObject zu jedem Zeitpunkt entsprechen muss, kann die "validate" Methode von den abgeleiteten
konkreten BusinessObject Klassen iiberschrieben werden um diese Regeln abzupriifen. Zusétzlich kann der
Eigenschaft "Rules" ein Satz von Regeln (BusinessRuleSet) zugewiesen werden, der aus beliebig vielen
einzelnen Geschiftsregeln (BusinessRule) bestehen kann. Damit ist zusdtzlich zur fixen Validierung iiber die
"validate" Methode eine dynamische Validierung mdglich, die vom Status des BusinessObjects innerhalb eines
Prozessablaufs abhidngig gemacht werden kann. Ein BusinessRule Objekt besteht im wesentlichen aus den
beiden geschiitzten Methoden "validate" und "createValidationError". Die verdffentlichte Operation
"checkRule" wird vom BusinessObject aufgerufen um eine einzelne Regel zu iiberpriifen. Dabei iibergibt das
BusinessObject sich selbst als Priifobjekt. Die Aufrufsequenz dieses Ablaufs ist in Abbildung 6 dargestellt. Die
Riickgaben habe ich dabei der Einfachheit halber weggelassen.

| aClien aBuysinessObjec aBusinessRuleSet aBusinessRule

T
I
I
I
isWalid :

validate

checkRules

getBusinessRulali}

:l....-._-._-._-._-._-._-._--

checkiR

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ledthis) I

:) validate

[
1
- g

getvalidationEmor |

T =T
I I

_| L

Abb. 6: Sequenz der Geschéftsregeliiberpriifung

Wenn ein Client Objekt die "isValid" Eigenschaft eines BusinessObjects abpriift wird zundchst die fixe
"validate" Methode ausgefiihrt und danach fiir jede Geschéftsregel aus dem angeschlossenen BusinessRuleSet
die "checkRule" Methode aufgerufen. Alle "validate" Methoden geben ein FALSE zuriick, falls die Regel
gebrochen wurde. Die fixe "validate" Methode des BusinessObjects sorgt in diesem Fall selbst dafiir, dass fiir
jede gebrochene fixe Regel ein ValidationError Objekt den ValidationErrors hinzugefiigt wird. Meldet ein
BusinessRule Objekt beim Aufruf von "checkRule" ein FALSE an das aufrufende BusinessObject zurtick, so
ruft das BusinessObject anschlieBend die "getValidationError" Methode der BusinessRule auf und legt das
zuriick erhaltene ValidationError Objekt in der ValidationErrorList ab. Uber die Eigenschaft "ValidationErrors"
kann das aufrufende Client Objekt die bei der Validierung aufgetretenen Fehler auswerten.

Teil 2: Geschaftsobjekte in C#

Das grundsitzliche Design einer 3-Schichten Anwendung ist unabhingig von der eingesetzten
Programmiersprache und wurde oben an Hand eines Designmodells erldutert. Jetzt wollen wir dieses
Designmodell als C# Applikation realisieren. Abbildung 1 zeigt einen Ausschnitt des erweiterten Modells fiir
die Implementation in C#. Die BusinessObjectManager Klasse nutzt ein DataAccess Object, das aus der
abstrakten Klasse DataAccessBase abgeleitet ist. Im Beispiel wird ein DataAccessSQL Objekt benutzt, das auf
den Zugriff auf eine SQL Server Datenbank spezialisiert ist. Wenn statt dessen ein DataAccessOleDB Objekt
genutzt wiirde, konnten die Daten aus einer beliebigen OLE DB fihigen Datenbank stammen, ohne dass der
BusinessObjectManager davon etwas merken wiirde oder darauf umgestellt werden miiite. Der Wechsel
zwischen Datenbanken kann, wie wir gleich sehen werden, ohne Neukompilierung und bei Bedarf sogar zur
Laufzeit erfolgen.

- - DalaAccessBase
BusinessObjectManager uses b +ConnectionString : string
+DatafceessObject | DataAccessBase ———+TahleMame : siring
fcreateBusinessObject() : BusinessObject +PrimaryKey : siring
usinessObject(in OID : ObjectiD) : BusinessObject +gotDataSet() : DataSof
etd ject i | gei f)
+newBusinessObjecl() : BusinessObject +gatDataSel{in OID : ObjectiD) : DataSat
+saveBusinessObjact(in BusinessObject | BusinessObjact) +getDataSetfin CommandSiring - string, in TableName : sting) : DataSet
+oetDataSet(in CommandString @ string, in TablaName @ string) +saveDalasel(in Daiaset : Datadel, in OID : ObyectiD) : inf
feraateConnection]) | IDbCannechion
aeakes s koraateCommand() | IDbCommand
#craateddaptar(in SelaciCommand : sting) ' DbDataAdapter
BusinessObject
+Data : DataRow DatahccessS0L

+isNew : Boolean = TRUE
+isChanged : Boolean = FALSE
+isValid : Boolean = TRUE

+Hules | BusinessRuleSel
+yalldationErrors © ValidationErrarLis|

validate() : Boolesch

Abb. 1: Ausschnitt aus C# Implementationsmodell

Die Basisklassen

IDisposable £—

arshalByRefObject
—M |
£ |DbCommand f}—

P

IDBEConnection |:)—

—|Businessﬂbjenfﬂﬂarﬂgﬂr]

ArrayList

—PalidatimErrorlet]

DataAccessBase

—|Datanmnlenhi

BusinessRule

alidationError

Abb. 2: Basisklassen des BOManagements

Ig
g

Abbildung 2 zeigt die Basisklassen des .NET Frameworks, aus denen die Klassen des Designmodells abgeleitet
wurden. Die BusinessObjectManager Klasse wurde von Component abgeleitet und kann damit bei Bedarf in die
Toolbox aufgenommen werden. Die BusinessObject Basisklasse wurde direkt aus Object abgeleitet, da
Geschiftsobjekte immer von einem entsprechenden Manager erzeugt und nicht als eigenstdndige Komponente
verwendet werden sollen.

Die Auflistungen von Geschéftsregeln (BusinesRuleSet) und Validierungsfehlern (ValidationErrorList) wurden
aus der ArrayList Klasse abgeleitet, da diese einfach zu verwalten ist und dynamisch erweitert werden kann.
Wer weil3 schon im voraus, wie viele Geschéftsregeln und Validierungsfehler ihn erwarten?

Der Vollstindigkeit halber ist in Abbildung 2 auch der Vererbungsbaum der in der DataAccessBase Klasse
benutzten Schnittstellen angegeben.

Die Klasse DataAccessBase
Listing 1 zeigt die Implementierung der abstrakten Klasse DataAccessBase, aus der die spezialisierten
Zugriffsklassen fiir SQL Server oder OLE DB Datenbanken abgeleitet werden. Der Code ist auf das
Notwendigste reduziert. Er muss im richtigen Leben natiirlich noch durch Ausnahmebehandlung, den ein- oder
anderen Kommentar und dhnliches erginzt werden.

public abstract class DataAccessBase
{
protected string ConnectionString;
public string ConnectionString
{
get {return ConnectionString;}
set { ConnectionString = value;}
}
protected string TableName;
public string TableName
{
get {return TableName; }
set { TableName = value;}

}

protected string PrimaryKey;
public string PrimaryKey
{
get {return PrimaryKey;}
set { PrimaryKey = value;}

}

protected abstract IDbConnection createConnection () ;

protected abstract IDbCommand createCommand (string CommandString,
IDbConnection Connection) ;

protected abstract DbDataAdapter createAdapter (string SelectCommand) ;

public abstract DataSet getDataSet () ;

public abstract DataSet getDataSet (string OID) ;

public abstract DataSet getDataSet (string CommandString, string
TableName) ;

public abstract int saveDataSet (DataSet DataSet, string OID) ;
}

Listing 1: Die generelle Zugriffsklasse DataAccessBase

DataAccessBase ist eine abstrakte Klasse. Aus dieser Klasse konnen also keine Objekte erstellt werden.
Abstrakte Klassen dienen als Elternklasse bei der Ableitung spezialisierter konkreter Klassen. Die Klasse
DataAccessBase ist direkt von der Klasse "Object" abgeleitet. Aus diesem Grund brauchen wir bei der
Definition von DataAccessBase selbst keine Elternklasse anzugeben.

Innerhalb von DataAccessBase werden zunichst drei Eigenschaften der Klasse beschrieben. Eigenschaften sind
immer mit einer get und/oder einer set Accessor-Methode verkniipft. Der ConnectionString beschreibt die
Verbindung zur Datenbank und kann beim Programmstart zum Beispiel aus einer INI Datei gelesen oder zur
Laufzeit zusammengebaut werden. Damit ist die spiter tatsichlich genutzte Datenbank bereits variabel
addressierbar. Um auch den Zugriff auf die einzelne Tabelle innerhalb der Datenbank variabel zu halten,
bendtigen wir noch den Namen der Tabelle und deren Primérschliissel. Dazu werden die Eigenschaften
"TableName" und "PrimaryKey" deklariert.

Da wir den Typ der spiter benutzten Datenbank ebenfalls als unbekannt voraussetzen, reicht es aber nicht aus,
lediglich den ConnectionString, Tabellen-Namen und den Primérschliissel variabel zu halten. Wenn wir spéter
einen DataSet fiillen, miissen wir die zur Datenbank passenden konkreten Connection, Adapter und Command
Klassen verwenden. Deshalb kdnnen wir hier in der DataAccessBase Klasse noch keine Methoden zum Zugriff
auf die Daten ausprogrammieren. Alle Methoden selbst sind daher als "abstract" deklariert, das heifit, es folgt in
dieser Klasse kein Methodencode sondern die abgeleiteten spezialisierten Klassen miissen den Methodencode
bereit stellen. In der Deklaration der Methoden createConnection(), createCommand() und createAdapter()
miissen wir aus dem gleichen Grund auf die Riickgabe eines generellen Typs ausweichen, da die konkret zu
verwendenden Typen erst von den abgeleiteten Klassen festgelegt werden. Die createConnection() Methode der
konkreten DataAccessSQL Klasse muss also ein SqlConnection Objekt zuriick liefern, wéhrend die gleiche

Methode der DataAccessOleDB Klasse ein OleDBConnection Objekt zuriickgeben soll. Alle Datenbank-
Connection Klassen miissen die Schnittstelle IDbConnection bereit stellen. Ebenso miissen alle Datenbank-
Command Klassen die IDbCommand Schnittstelle anbieten. Deshalb benutzen wir diese beiden Schnittstellen
als Riickgabetypen fiir createConnection() und createCommand(). In den spéter abzuleitenden Klassen werden
wir den gelieferten Typ in den konkret bendtigten Typ umwandeln. Ahnlich verhilt es sich bei den benétigten
DataAdapter Klassen. Hier bildet DbDataAdapter die Elternklasse fiir alle Datenzugriffs-Adapter.

Zum Zugriff auf die Daten wird eine mehrfach {iberladene Methode namens getDataSet angeboten. Wie der
Name schon sagt, wird bei allen Aufrufen ein DataSet zuriick geliefert. Wenn beim Aufruf keine weiteren
Parameter libergeben werden, enthélt der zuriick gelieferte DataSet die Daten eines neuen - d.h. noch nicht in
der Datenbank gespeicherten - Geschéftsobjekts. Wenn die Daten eines bereits gespeicherten Geschiftsobjekts
abgerufen werden sollen, muss beim Aufruf von getDataSet die Object-ID (OID) des gewiinschten
Geschiftsobjektes iibergeben werden. Wenn eine Liste von gespeicherten Geschiftsobjekten bendtigt wird, kann
getDataSet mit einem passenden SQL SELECT Kommando (CommandString) aufgerufen werden. Zusitzlich
wird hierbei noch der Tabellenname (TableName) angegeben, unter dem der Ergebniscursor im DataSet
gespeichert werden soll.

Zum Aktualisieren der Daten eines Geschéftsobjektes - also fiir INSERT, UPDATE oder DELETE reicht eine
allgemeine saveDataSet Methode. Aktualisiert werden in dieser Version immer nur die Daten eines einzelnen
Geschiéftsobjektes, dessen OID beim Aufruf der saveDataSet Methode als zweiter Parameter mit dem DataSet
iibergeben wird.

Der konkrete Datenzugriff
Schauen wir uns als nichstes den konkreten Zugriff auf eine SQL Server Datenbank an. Listing 2 enthélt den
Code der aus DataAccessBase abgeleiteten Klasse DataAccessSQL. Auch hier nur das Notwendigste und ein
paar Kommentare zur besseren Lesbarkeit des Codes.

public class DataAccessSQL : MR.BOManagement.DataAccessBase
{
/// createCommand
protected override IDbCommand createCommand (string CommandString,
IDbConnection Connection)
{
return new SglCommand (CommandString, (SglConnection)Connection);

}

/// createConnection
protected override IDbConnection createConnection ()
{

return new SglConnection (this.ConnectionString);

}

/// createAdapter
protected override DbDataAdapter createAdapter (string SelectCommand)
{
IDbConnection Connection = createConnection();
IDbCommand Command = createCommand (SelectCommand, Connection);
SglDataAdapter DataAdapter = new
SglDataAdapter ((SglCommand) Command) ;
return DataAdapter;

}

/// getDataSet (CommandString, TableName)
public override DataSet getDataSet (string CommandString, string
TableName)
{
/// Create the adapter with the given SELECT command
SglDataAdapter DataAdapter =
(SglDataAdapter) createAdapter (CommandString) ;

/// Create and fill the DataSet

DataSet DataSet = new DataSet () ;
_DataAdapter.Fill (DataSet, TableName) ;

return DataSet;

}

/// getDataSet (OID)
public override DataSet getDataSet (string OID)

{
/// Create the adapter with the single-object SELECT command
string SelectCommand = "SELECT * FROM "+ TableName
+ " WHERE ("+_PrimaryKey+"= '"+OID+" ") ";

SglDataAdapter DataAdapter
(SglDataAdapter) createAdapter (SelectCommand) ;
DataSet DataSet = new DataSet () ;

_DataAdapter.Fill(DataSet, TableName) ;

return DataSet;

}

/// getDataSet ()
public override DataSet getDataSet ()

{
/// Create the adapter for the empty table

string SelectCommand = "SELECT * FROM "+ TableName;

SglDataAdapter DataAdapter
(SglDataAdapter) createAdapter (_SelectCommand) ;

DataSet DataSet = new DataSet();
_DataAdapter.FillSchema (DataSet, SchemaType.Mapped, TableName) ;

= DataSet.Tables[0] .NewRow () ;

DataRow Row =
_Row[PrimaryKey] = System.Guid.NewGuid();

_DataSet.Tables[0] .Rows.Add (Row) ;

return DataSet;

}

/// saveDataSet
public override int saveDataSet (DataSet dataSet, string OID)

{

/// Create the adapter with the single-object SELECT command
string SelectCommand = "SELECT * FROM "+ TableName
+ " WHERE ("+_PrimaryKey+":'"+OID+"')",
SglDataAdapter DataAdapter =
(SglDataAdapter) createAdapter (_SelectCommand) ;
SglCommandBuilder CommandBuilder = new
SglCommandBuilder (DataAdapter) ;
_DataAdapter.DeleteCommand = CommandBuilder.GetDeleteCommand () ;
_CommandBuilder.GetUpdateCommand () ;

_DataAdapter.UpdateCommand
_DataAdapter.InsertCommand = CommandBuilder.GetInsertCommand() ;

// Update the data of the DataSet
int RowsUpdated = DataAdapter.Update (dataSet, TableName) ;

return RowsUpdated;

IT

Listing 2: Die konkrete Zugriffsklasse DataAccessSQL

In den verschiedenen Ausprigungen der getDataSet Methode wird zunéchst ein DataAdapter erzeugt. Die
spezialisierten DataAdapter fiir SQL-Server und OleDb Zugriff bieten jeweils einen Konstruktor, der das
benotigte SQL-SELECT Statement als Parameter libernechmen kann. Da ein solcher Konstruktor fiir die
Ableitung von neuen DataAdapter-Klassen aus DbDataAdapter ausdriicklich empfohlen wird, konnen wir davon
ausgehen, dass auch auf andere Datenbanken spezialisierte DataAdapter diesen Konstruktor anbieten werden.

Wenn der benétigte DataAdapter zur Verfiigung steht, konnen wir dessen Fill Methode aufrufen, um den
DataSet mit Daten zu fiillen. Den Namen fiir die zu fiillende Tabelle nehmen wir bei einem Einzelobjekt-Zugriff
aus dem Eigenschafts-Wert _TableName, beim Abruf einer Objektliste wird der Zieltabellenname als Parameter
iibergeben.

Wenn getDataSet() ohne Angabe von Parametern aufgerufen wird, soll ein DataSet mit einer Tabelle zuriick
gegeben werden, die einen nicht in der Datenbank gespeicherten neuen Datensatz enthélt. Einen solchen Satz
kénnen wir natiirlich nicht tiber ein SQL-SELECT mit anschlieBendem Aufruf der Fill Methode abrufen, da der
Satz ja noch nicht vorhanden ist. Fiir solche Situationen bieten DataAdapter Klassen eine FillSchema Methode
an. Damit kann eine leere Zieltabelle erzeugt werden, deren Spaltendefinitionen und Datentypen dem
Ergebniscursor des SQL-SELECT Statement entsprechen. Wenn wir einer solchen Tabelle mit NewRow eine
neue Zeile hinzufligen haben wir den benétigten leeren Datensatz fiir das neue Geschéftsobjekt erzeugt.

Abschlieflend fiillen wir noch das Primérschliisselfeld (die Objekt-ID) mit einem eindeutigen Wert, in diesem
Fall mit einer neuen GUID. Diesen Vorgang in die Datenzugriffsklasse auszulagern hat den entscheidenden
Vorteil, dass die Anwendung selbst nicht zu wissen braucht, wie eine Objekt-ID gebildet wird. Festgelegt ist
lediglich der Datentyp "string" und die Tatsache dass jedes Objekt eine eindeutige ID hat, die v6llig unabhéngig
von den Objektdaten ist (Existence-based Identity). Was in diesem String abgelegt wird und wie die benotigten
eindeutigen Werte erstellt werden, muss die Anwendung nicht interessieren.

Fiir saveDataSet wird ebenfalls ein DataAdapter mit einem single-object SELECT Kommando benétigt. Das
SELECT Kommando reicht aber nicht aus, wir brauchen jetzt auch die tabellenspezifischen DELETE, UPDATE
und INSERT Kommandos. Diese miissen aber nicht vom Entwickler selbst erstellt werden, die Aufgabe nimmt
uns ein SqlCommandBuilder ab. Dem Konstruktor des SqlCommandBuilders iibergeben wir den aktuellen
DataAdapter. Damit kennt der SqlCommandBuilder schon die Struktur des zu sichernden Cursors und wir
kénnen die passenden Kommandos iiber GetDeleteCommand(), GetUpdateCommand() und
GetlnsertCommand() abrufen. Wenn die Kommandos zur Verfiigung stehen, rufen wir die Update Methode des
DataAdapter Objekts auf. Die Update Methode priift den aktuellen Inhalt des i{ibergebenen DataSet und
entscheidet selbst, ob Daten in der Datenbank zu 16schen, neu anzulegen oder zu aktualisieren sind.

BusinessObject und BusinessObjectManager

Die BusinessObject Klasse ist schnell erldutert, da sie lediglich zwei Eigenschaften deklariert. Die erste
Eigenschaft heiflt Data und ermoglicht den Zugriff auf die DataRow, die die Daten des Geschéftsobjekts enthilt.
Die zweite Eigenschaft heifit isNew und ist lediglich ein Flag, das aussagt, ob das Geschéftsobjekt bereits
gespeichert ist oder nicht. Die Klassenvariablen dazu sind als "internal" gekennzeichnet. Dadurch kann die
BusinessManager Klasse direkt auf die Klassenvariablen zugreifen und diese setzen wihrend alle anderen
Klassen auerhalb der BOManagement Assembly nur lesend auf die Eigenschaft zugreifen konnen. Um diesen
Artikel nicht unnétig lang werden zu lassen haben wir auf die Realisierung der Validierungsmethoden (siche
Design Modell) verzichtet.

public abstract class BusinessObject

{

internal DataRow Data = null;
public DataRow Data
{

get {return Data;}

}

internal Boolean isNew = true;

12

public Boolean isNew
{
get {return isNew;}

}

| }

Listing 3: Die abstrakte BusinessObject Klasse

Die abstrakte BusinessObjectManager Klasse ist nur wenig aufwéndiger. Listing 4 zeigt die Klassendefinition.
Auch hier wird zunichst eine Eigenschaft deklariert, die zur Laufzeit mit einer Referenz auf das zu benutzende
DataAccessObject bestiickt wird. Da wir in der generell formulierten Manager Klasse die konkret verwaltete
BusinessObject-Klasse nicht kennen, kdnnen wir die Methode createBusinessObject hier nicht ausformulieren.
Das miissen wir den konkreten Managerklassen iiberlassen. Deshalb wird diese Methode hier lediglich als
abstract deklariert.

Alle anderen generell bendtigten Methoden konnen jedoch schon hier in der Mutter aller
BusinessObjectManager ausprogrammiert werden. Die getBusinessObject-Methode ermoglicht den Abruf eines
BusinessObject iiber dessen Object-ID, newBusinessObject erstellt und initialisiert ein neues BusinessObject,
saveBusinessObject speichert ein neues oder gedndertes BusinessObject in der Datenbank. AuBerdem gibt es
auch hier eine getDataSet Methode, mit dem Listen gespeicherter Geschéftsobjekte entsprechend dem in
CommandString libergebenen SQL SELECT Kommando abgerufen werden konnen. Damit haben wir alles
zusammen, was wir fiir eine erste kleine Beispielapplikation brauchen.

public abstract class BusinessObjectManager
System.ComponentModel.Component
{
private DataAccessBase DataAccessObject;
public DataAccessBase DataAccessObject
{
get {return DataAccessObject;}
set { DataAccessObject = value;}

}
protected abstract BusinessObject createBusinessObject () ;

public BusinessObject getBusinessObject (string OID)
{

BusinessObject BO = createBusinessObject () ;

DataSet BODataSet = DataAccessObject.getDataSet (0OID);
BO. Data = BODataSet.Tables[0].Rows[0];

BO. isNew = false;

return BO;

}

public BusinessObject newBusinessObject ()

{

BusinessObject BO = createBusinessObject () ;
DataSet BODataSet = DataAccessObject.getDataSet();
BO. Data = BODataSet.Tables[0].Rows[0];

return BO;

}

public void saveBusinessObject (BusinessObject BO)

{
string OID = BO.Data[DataAccessObject.PrimaryKey].ToString()

DataSet BODataSet = BO.Data.Table.DataSet;

DataAccessObject.saveDataSet (BODataSet, 0OID);
BO. isNew = false;

}

public DataSet getDataSet (string CommandString, string TableName)
{

return DataAccessObject.getDataSet (CommandString, TableName) ;

13

}

Listing 4: Die abstrakte BusinessObjectManager Klasse

Eine Beispielapplikation
Als Beispiel fiir die Realisierung einer Applikation mit Geschiftsobjekten und Geschéftsobjekt-Managern habe
ich eine einfache Zeiterfassung gewahlt. Abbildung 3 zeigt das Geschiftsmodell der Beispielapplikation. Mit
diesem Programm werden Zeiten festgehalten, die fiir Aktivitdten im Rahmen eines Projektes verwandt werden.
Eine Aktivitit beginnt zum Zeitpunkt "Start" und endet bei Begin der nichsten Aktivitit. So braucht kein Timer
mitzulaufen und die Zeiterfassung kann auch dezentral verwendet werden. Einzige Bedingung ist, dass immer
eine SchluBaktivitit wie zum Beispiel "Feierabend" erfasst wird, die dann bis zum nichsten Arbeitsbeginn gilt.

Die angefallenen Aktivititen werden iiber Buchungssitze (Booking) mit Konten (Account) verkniipft, iiber die
die Aktivitdt abzurechnen ist.

Activity Booking Account
Start wird festgehaltan in b [Actyiny 1 wird abgerachnet als Customer
ltem hococount FProject
Description . « [Portion . « [Title

Abb. 3: Geschiftsmodell der Beispielapplikation

Als Beispiel dient hier die Verwaltung der Accounts. Dafiir leiten wir zunichst mal eine Account Klasse aus der
abstrakten Klasse BusinessObject ab. Diese Account Klasse konnen wir spéter nach Belieben mit dem Verhalten
versehen, das ein Account-Objekt anbieten sollte. Hier reicht uns zunédchst mal, dass es diese Klasse gibt und
wir also Account-Objekte erstellen und speichern konnen. Diese Aufgabe iibernimmt der AccountManager, den
wir aus BusinessObjectManager ableiten wie in Listing 5 dargestellt.

public class AccountManager : BusinessObjectManager
{
public AccountManager ()
{
// initialize the data access object
this.DataAccessObject = new DataAccessSQL() ;
this.DataAccessObject.ConnectionString =
"data source=MyHost\\VSdotNET;initial catalog=ActiveTimes;integrated
security=SSPI";

// used to build the SQL statement
this.DataAccessObject.TableName = "Accounts";
this.DataAccessObject.PrimaryKey = "OID";

}

protected override BusinessObject createBusinessObject ()

{
return new Account () ;

}

}

Listing 5: Der AccountManager

Im Konstruktor legen wir die Eigenschaften des AccountManagers fest. Zunédchst wird ein DataAccessObject
zugewiesen, in diesem Fall ist es hart verdrahtet ein DataAccessSQL Objekt. AuBerdem wird der
ConnectionString beschrieben, der zur Verbindung mit der Datenbank gebaucht wird. Im richtigen Leben
werden diese beiden Informationen natiirlich in den Konfigurationsdaten der Applikation hinterlegt. Damit ist es
moglich, die zu benutzende Datenbank von aufien festzulegen.

Des weiteren muss der AccountManager noch wissen, wie die Tabelle in der Datenbank heif3t, in der die Daten
gespeichert werden sollen. Die Tabelle kdnnte natiirlich in Wirklichkeit auch ein Datenbank-View sein, wenn
Sie aus irgendwelchen Griinden die Daten eines Objektes auf mehrere Tabellen verteilen wollen. Als letzte
Angabe im Konstruktor wird der Name des Primérschliissels eingetragen.

Die einzige Fihigkeit, die wir dem neuen AccountManager beibringen miissen ist, Geschéftsobjekte des von ihm
verwalteten Typs zu erzeugen. Dazu iiberschreiben wir die Factory-Method createBusinessObject und liefern bei

14

Aufruf ein neues Account Objekt zuriick. Das war's. Jetzt konnen wir aus Windows- oder Web-Forms, aus
anderen Programmteilen oder wo auch immer, Account Objekte erzeugen, speichern und wieder abrufen.

Versuchen wir es mal aus einer Windows-Form heraus. Abbildung 4 zeigt ein Testformular dazu im Designer,
Listing 6 zeigt die wichtigsten Teile des Formularcodes dazu.

1B IAccountsGrid System.Windows, Forms, DataGrid j
i}'nctive Times ;Iglll = %# | -ﬁ |
Accounts | ETbaten —
(DataBindings)
Custamer Froject Account DataMember
DataSource dsAccounts.Accounts
TableStyles {Auflistung)
Tag
B Eingabehilfen
AccessibleDescription
AccessibleMame
AccessibleRole Default L
B Entwurf
{Mame} AccountsGrid
Locked False
E newBusinesz0bject [zaveBusinessObject [353 Refresh ObjectList [= r::l::: private
i _B_u_sines_s .DbiECt AlternatingBackColor |:| White
e e BackColor] white
i S Praject I BackgroundCalor I:l Gainsboro
: e CaptionBackCalar [silver
7D IESGS— — — ... CantianFareCalor B Black e
| o e e e] Albomatachitarmaiieren
DataSource
&8 dedccounts Gibt die Datenquelle fir das DataGrid an.

Abb. 4: Das Beispielformular im Designer

Zur Anzeige der Liste im Grid benutzen wir einen typisierten DataSet dsAccounts, der die Struktur der Accounts
Tabelle bereit stellt. Damit miissen wir auch bei der Benutzung von Managerklassen nicht auf so schone Dinge
wie das DataBinding beim Grid verzichten. Allerdings wird der DataSet dsAccounts niemals direkt mit einer
Datenquelle verbunden. Zum Aktualisieren der Account-Liste rufen wir stattdessen iiber den AccountManager
_AccountMan die benétigten Daten ab und kopieren diese mit Hilfe der Merge Methode in den typisierten
DataSet dsAccounts. Das an dsAccounts gebundene Grid merkt dann, dass neue Daten angekommen sind und
zeigt diese an. Mehr als im Event Handler "AktualisierenButton Click" von Listing 6 dargestellt ist dazu nicht
notig.

Im newButton Click machen wir uns die Sache noch einfacher indem wir dem AccountManager lediglich
mitteilen, dass wir ein neues Account Objekt bendtigen und anschlieBend die displayBO Methode der Form zur
Ausgabe der Daten auffordern. Beim Speichern im saveButton_Click aktualisieren wir die Daten des Account-
Objektes mit den Werten der zugehorigen Textbox Controls und lassen den AccountManager das Objekt
anschlieBend speichern. Wenn wir im Grid eine andere Zelle anwéhlen tritt das Ereignis
AccountsGrid_CurrentCellChanged ein. In diesem Fall laden wir das in der Zeile dargestellte Geschiftsobjekt
aus der Datenbank und zeigen es im Arbeitsbereich der Form an.

Dies sind natiirlich alles nur einfache Beispiele zur Anbindung eines BusinessObjectManagers an eine
Oberfliche. Im wirklichen Leben muss noch einiges an Drumherum passieren, um dem Anwender eine
benutzerfreundliche und stabile Anwendung an die Hand zu geben. Am generellen Prinzip der 3-Schichten
Trennung andert sich jedoch nichts wesentliches mehr. Das vorgestellte Design bietet die Moglichkeit,
Oberflache, Verarbeitung und Datenhaltung strikt zu trennen. Damit konnen die Verarbeitungsklassen bei einem
Wechsel der Oberfliche oder der Datenbank weiterverwendet werden und die Algorithmen der
Verarbeitungsschicht konnen komplett ohne Oberfliche getestet werden.

private AccountManager AccountMan = new AccountManager () ;

private void AktualisierenButton Click(object sender, System.EventArgs
e)
{
dsAccounts.Clear () ;
DataSet Accounts =
Accounts", "Accounts") ;

_AccountMan.getDataSet ("Select * from

15

dsAccounts.Merge (Accounts) ;

private void newButton Click(object sender, System.EventArgs e)

{

_Account = (Account) AccountMan.newBusinessObject();
displayBO () ;
}

private void saveButton Click (object sender, System.EventArgs e)

{

_Account.Data["Customer"] = CustomerTextBox.Text;
_Account.Data["Project"] = ProjectTextBox.Text;
Account.Data["Account"] = AccountTextBox.Text;

_AccountMan.saveBusinessObject (_Account) ;

}

private void AccountsGrid CurrentCellChanged (object sender,
System.EventArgs e)
{

string OID =
dsAccounts.Tables[0] .Rows [AccountsGrid.CurrentRowIndex] ["OID"].ToString (
) ;

loadBO (_OID) ;

displayBO () ;
}

private void loadBO (string OID)
{
_Account = (Account) AccountMan.getBusinessObject (OID) ;

}

private void displayBO ()

{
CustomerTextBox.Text = Account.Data["Customer"].ToString()
ProjectTextBox.Text _Account.Data["Project"].ToString() ;
AccountTextBox.Text _Account.Data["Account"].ToString() ;

}

Listing 6: Methoden des Beispielformulars

Zusammenfassung

In ersten Teil meines Artikels tiber Geschéiftsobjekte und deren Realisierung mit .NET habe ich zunichst
gezeigt, welche Vorteile eine Architektur mit Geschiftsobjekten bietet. AnschlieBend habe ich ein Designmodell
vorgestellt, das die Verarbeitung konsequent vom Datenzugriff trennt und die Moglichkeit zu einer dynamischen
Uberpriifung von Geschiftsregeln anbietet. Im zweiten Teil wird das hier vorgestellte Designmodell mit den
Klassen von .NET in C# realisiert. Als Abschluss stelle ich eine Beispielapplikation vor, die den Einsatz von
Geschiftsobjekten zusammen mit Windows Forms erldutert.

Literaturhinweise

[BlahaPremerlani98]

Blaha, M. / Premerlani, W.: Object-oriented Modeling and Design for Database Applications; Prentice Hall,
1998

[Gamma95]

Gamma, E. et.al.: Design Patterns, Elements of Reusable Object-Oriented Software; Addison-Wesley, 1995
[McNeish02]
McNeish, K.: .NET for Visual FoxPro Developers; Hentzenwerke Publishing, 2002

16

[Rdtzmann2000]

Rétzmann, M.: Klassen zu Relationen; http://www.ractzmann-gmbh.de/Klassen%20zu%20Relationen.htm

17

