
schwerpunkt
r a p i d a p p l i c a t i o n t e s t i n g

v o n m a n f r e d r ä t z m a n n

„RAPID APPLICATION TESTING”

von Software. Rapid Application Testing
übernimmt und erweitert diesen Ansatz
für die Testverfahren des Entwicklungs-
teams selbst. Es unterscheidet sich vom
herkömmlichen formalen Testansatz
hauptsächlich in den folgenden Punkten:

Mission
Rapid Application Testing beginnt nicht
mit einer Aufgabe wie „Erstelle die Test-
fälle”, sondern mit einer Mission, zum
Beispiel: „Finde die wichtigsten Fehler
schnell.” Welche Aufgaben zur Erfüllung
der Mission zu erledigen sind, hängt vom
Inhalt der Mission ab. Keine der im for-
malen Testansatz als notwendig erachteten
Tätigkeiten gilt als unverzichtbar, alle
Tätigkeiten müssen ihre Nützlichkeit in
Bezug auf die Mission nachweisen.

Können
Der herkömmliche formale Testansatz
bewertet die Bedeutung des Könnens, des
Wissens und der Fertigkeiten der Testerin
oder des Testers zu niedrig. Rapid Appli-
cation Testing erfordert Wissen um den
Testgegenstand und die möglichen Probleme
beim Einsatz ebenso wie die Fähigkeit, logi-
sche Schlussfolgerungen zu ziehen und aus-
sagekräftige Versuche zu entwickeln.

Risiko
Der herkömmliche Testansatz strebt eine
möglichst hohe funktionale und strukturel-
le Überdeckung an. Rapid Application
Testing zielt auf die wichtigsten Probleme
zuerst. Dazu wird zunächst ein Verständnis
dessen, was passieren kann, und welche
Auswirkungen es hat, wenn es passiert,
erarbeitet. Anschließend werden die mögli-

Nicht nur die Anforderungen der Kunden, auch die technischen Möglichkeiten, das Aussehen
der Programme und die Art, wie Mensch und Software zueinander finden, sind einem ständi-
gen Wandel unterzogen. Das Testen von Software kann davon nicht unberührt bleiben. Der
Artikel beschreibt Möglichkeiten, auch im Testprozess auf sich ständig ändernde Anforderun-
gen und die in der Praxis übliche Zeit- und Ressourcenknappheit zu reagieren.

m e h r z u m t h e m a :
www.stickyminds.com
www.satisfice.com

12 13

Manfred Rätzmann
(E-Mail: m.raetzmann@raetzmann-
gmbh.de) ist Softwareentwickler und
Berater mit den Schwerpunkten
Testtechniken, Anwendungsdesign,
Komponentenbau und Framework-
Entwicklung. Er ist Autor des Buches
„Software Testing” ([Rät02]).

der autor

■ Fehler, die das Erscheinungsbild der
Software beeinträchtigen.

Benutzung bedeutet hier immer den ge-
samten Umgang mit dem Programm, also
auch Installieren und Administrieren.

Letztendlich wird diese Rangfolge der
Wichtigkeit aber von den Zielen des
Projekts und den an diesen Zielen interes-
sierten Personen (Stakeholder) festgelegt.
So können zum Beispiel in einer Konkur-
renzsituation, in der es entscheidend auf
das Aussehen der Software ankommt – ob
diese also jugendlich oder seriös, frech
oder abgeklärt, unterhaltsam oder kompe-
tent wirkt – Unstimmigkeiten im Erschei-
nungsbild viel wichtiger sein als fehlende
Funktionalität.

Das Rapide am
„Rapid Application Testing”
Die Grundlage der Testplanung und aller
Testmetriken war lange Zeit die funktio-
nale Überdeckung und die Anweisungs-
überdeckung. Nachdem man eingesehen
hatte, dass man nicht alles testen kann,
wurden Methoden zur Aufdeckung von
Redundanzen innerhalb der Testfälle und
der Testdaten entwickelt und außerdem
Methoden zur Bewertung der Risiken, die
man eingeht, wenn bestimmte Teile der
Software weniger intensiv getestet werden
als andere.

Ziel des Rapid Application Testing ist
es, die schwerwiegendsten Fehler mög-
lichst schnell zu finden. Deshalb heißt das
Vorgehen auch „Rapid Application
Testing” und nicht etwa „Total
Application Testing”. Alle Fehler zu fin-
den, kann ebenfalls ein interessantes Spiel
sein – die Frage ist allerdings meistens, wer
die Kosten dafür übernimmt.

James Bach, Inhaber der Firma Satisfice
(vgl. [Bac]), propagiert „Rapid Testing”
für externe Tester. Seine Beschreibung des
Rapid Testing beginnt mit den unten auf-
geführten Erkenntnissen zu Mission, Kön-
nen, Risiko und Erfahrung beim Testen

Agile Prozesse sind gefragt, also Prozesse,
die auf Änderungen schnell reagieren und
die dazu mehr auf Kommunikation,
Selbstorganisation und Auslieferung real
existierender Software setzen als auf
Planung, Überwachung und Dokumen-
tation des Herstellungsprozesses (vgl.
[Fow01]). Alistair Cockburn beschreibt
Softwareentwicklung als Spiel in einer
Gruppe, das zielorientiert, zeitlich und
inhaltlich abgegrenzt und kooperativ
abläuft (vgl. [Coc02]).

Die Regeln des Spiels zwischen
Software-Entwickler und -Tester sind ein-
fach: Die Tester versuchen, so schnell wie
möglich die wichtigsten Fehler zu finden,
das heißt nachzuweisen, dass das Pro-
gramm unter bestimmten Vorausset-
zungen versagt. Deutlichstes Zeichen für
ein Versagen ist der gemeine Absturz: eine
allgemeine Schutzverletzung oder ein
Einfrieren („Nichts geht mehr”) des
Programms. In diesem Sinne kann man
Rapid Application Testing durchaus als
die Kunst bezeichnen, ein Programm zum
Absturz zu bringen.

Das Versagen eines Programms zeigt sich
nicht immer so krass wie bei einem Absturz.
Subtilere Versager sind Ablauf- oder
Ausgabefehler, Rechenfehler, Benutz-
barkeitsprobleme bis hin zu übergroßer
Sorglosigkeit im Umgang mit vertraulichen
Daten. Da nicht alle Fehler gleich wichtig
sind, sollte eine Rangfolge der
Fehlergewichtung zu den bekannt gegebe-
nen Spielregeln zählen. Hier ein Vorschlag,
wie sich die Fehler in der Rangfolge ihrer
Wichtigkeit – ausgerichtet an der
Benutzbarkeit der Software – staffeln lassen:

■ Fehler, die eine vorgesehene Benutzung
unmöglich machen,

■ Fehler, die dazu führen, dass eine vor-
gesehene Benutzung nur auf Umwegen
möglich ist,

■ Fehler, die einen lästigen und unnöti-
gen Mehraufwand bei der Benutzung
des Programms verursachen und

www.objektspektrum.de

www.s igs-datacom.de3/2003

schwerpunkt
r a p i d a p p l i c a t i o n t e s t i n g

cherweise problematischen Punkte in der
Reihenfolge ihrer Wichtigkeit abgeprüft.

Erfahrung
Um auch beim Testen nicht in einer
Analyse-Paralyse zu verharren, sollen die
Tester ihren Erfahrungen vertrauen.
Während beim herkömmlichen formalen
Testansatz die Erfahrungen der Tester meist
unbewusst und damit auch ungeprüft ein-
fließen, sollen die Tester beim Rapid-
Application-Testing-Ansatz ihre Erfah-
rungen sammeln, festhalten und durch
bewussten Einsatz überprüfen. Dazu dienen
ein Gespür für Fehler und Schwachstellen
(Error-Guessing) genauso wie Aussagen zu
Fehlerhäufungen und Fehlerfindungsraten,
die aus Bug-Tracking-Systemen gewonnen
werden.

Flexibilität
Rapid Application Testing ist nicht an vor-
gegebene Testpläne und Testprozeduren
gebunden. Die Ergebnisse der durchgeführ-
ten Tests haben einen weit reichenden
Einfluss auf die noch auszuführenden Tests.
So dringt Rapid Application Testing schnel-
ler zu den Kernproblemen der Software vor
als vorgeschriebenes (scripted) Testen.

Integration
Rapid Application Testing ist integriertes
Testen, d. h. es ist in den Softwareent-
wicklungsprozess integriert und nicht ein

zweiter, nebenher laufender Software-
Validierungsprozess. Alle konstruktiven
Maßnahmen sollen einen Doppelnutzen
hervorbringen. Doppelnutzen bedeutet
eine Tätigkeit so auszuführen, dass neben
dem hauptsächlichen ersten ein zweiter
Nutzen entsteht – in diesem Fall der
Nutzen der permanenten Qualitäts-
sicherung und Qualitätskontrolle.

Produktorientierung
Das klassische Testplanungsmodell orien-
tiert sich am Herstellungsprozess der Soft-
ware und leitet daraus die Testphasen ab.
Rapid Application Testing orientiert sich
dagegen an den hergestellten Produkten
oder Zwischenprodukten.

Produkte des Softwareentwicklungs-
prozesses entstehen, wenn sie gebraucht
werden. Wenn sie entstanden sind, werden
sie sofort geprüft. Jedes Produkt wird
dabei einer expliziten oder einer implizi-
ten Prüfung unterworfen: explizit durch
Prüfverfahren, die auf die spezielle Art von
Produkt zugeschnitten sind, und implizit
durch kritische Nutzung der entstehenden
Produkte im weiteren Entwicklungs-
prozess. Abbildung 1 stellt die Verknüp-
fung von Produkten des Entwicklungspro-
zesses mit spezifischen Prüfverfahren dar.

Teamwork
Rapid Application Testing erfolgt im
Wesentlichen „zwischendurch”. Erstel-

lungs- und Testphasen wechseln sich ab,
gesteuert durch die Verfügbarkeit einzel-
ner Produkte oder Zwischenprodukte im
Entwicklungsprozess. „Tester sein” wird
als Rolle betrachtet, die von einzelnen
Personen je nach Bedarf eingenommen
wird. Alle diese Personen sind darauf
angewiesen, schnell zum Thema zu kom-
men. Die formalen Anforderungen an
Testprozeduren, die bei gut ausgestatteten
und zeitlich entspannten Projekten durch-
aus sinnvoll sein können, sind hier eher
hinderlich.

Pragmatismus
Rapid Application Testing ist Gray-Box
Testing. Dieses besteht aus Methoden und
Werkzeugen, die Kenntnisse der internen
Applikationsstrukturen benutzen, um
Black-Box-Testfälle zu planen und durch-
zuführen (siehe Abb. 2). Formale Differen-
zierungen zwischen Funktions- und Struk-
turtests sind zweitrangig. Alles, was hilft
die wichtigsten Fehler schnell zu finden, ist
erlaubt. Auch Test-Automatisierung wird
nicht als Ziel, sondern als Mittel betrach-
tet, das seine Nützlichkeit nachweisen
muss. Das Ziel ist funktionierende Soft-
ware.

Kundenbeteiligung
Rapid Application Testing ist verteiltes
Testen. Vertreter des Kunden, des Auf-
traggebers oder Anwendervertreter wer-
den an Test- und Prüfmaßnahmen betei-
ligt. Sie übernehmen insbesondere
fachliche Tests und Benutzbarkeits-
prüfungen. Kurze Iterationen und ein per-
manenter Dialog zwischen externen
Testern und dem Entwicklungsteam inte-
grieren auch externe Tester in den
Entwicklungsprozess. Abbildung 3 zeigt
eine sinnvolle Verteilung von Aufgaben
oder Verantwortlichkeiten beim Testen.

Teststrategien
Testen und Verbessern
Die am weitesten verbreitete Strategie
beim Testen innerhalb des Entwicklungs-
prozesses ist wohl Testen und gleichzeiti-
ges Verbessern von Software (Test&Tune).
Testen und Beheben der gefundenen Fehler
sind in dieser Strategie nicht voneinander
getrennt, vielmehr wird Testen als not-
wendige Vorarbeit betrachtet, um die
Dinge im Programm nachbessern zu kön-
nen, die noch nicht richtig laufen. Testen
und Verbessern ist in dieser Form eine rei-
ne Entwicklerstrategie. Vor der Freigabe
eines Programmteils probieren der
Entwickler oder die Entwicklerin aus, ob

Abb. 1: Produkte werden mit Prüfmethoden verknüpft

Abb. 2: Gray Box Testing

schwerpunkt
r a p i d a p p l i c a t i o n t e s t i n g

14 15 www.objektspektrum.de

um die Sache richtig rund zu machen?
■ Werden alle oder zumindest die wich-

tigsten Arbeitsabläufe von der Soft-
ware unterstützt? Fördert das Pro-
gramm den Fluss der Arbeit oder
behindert es ihn?

■ Erkennen die Benutzer der Software
sich und ihr Arbeitsgebiet wieder?
Stimmen die Fachausdrücke, stimmen
die Abstraktionen?

■ Macht es Spaß, mit der Software zu
arbeiten, oder ist es eher „ätzend” und
lästig? Fühlen die Benutzer sich über-
fordert oder langweilen sie sich?

Projektintern können Sie auf Modul- oder
Komponentenebene die „Testen durch
Benutzen”-Strategie ebenfalls anwenden.
Durch Modularisierung, Schichten- oder
Komponentenarchitektur wird die Situa-
tion des Benutzens bereits in den Ent-
wicklungsprozess eingebaut und entsteht
nicht erst an dessen Ende, wenn alles fertig
ist. Die Module, Komponenten, Klassen
oder Funktionen des einen Entwicklers
sollen vom anderen Entwickler genutzt
werden, am besten ohne Blick in den
Quellcode.

Es wird zwar manchmal gefordert, dass
der Quellcode allen Entwicklern „gehö-
ren” soll, sprich, dass sich alle Entwickler
im Quellcode ähnlich gut auskennen sol-
len. Im Hinblick auf das „Testen durch
Benutzen” ist es aber besser, wenn sich die
Kenntnis auf die Schnittstellen, auf die
Problembeschreibung und auf den allge-
meinen Lösungsansatz beschränkt.

Testen durch Dokumentieren
Auch das Verfassen der Benutzerdoku-
mentation ist eine Möglichkeit, „Testen
durch Benutzen” einzusetzen. Die
Benutzerdokumentation wird dann nicht
vom Entwickler erstellt – zumindest nicht
vom Entwickler des beschriebenen
Programmteils – sondern von einer
Person, die das zu beschreibende

alles glatt läuft, und korrigieren dabei
sofort die gefundenen Fehler. In dieser
Phase beschäftigen sie sich auch verstärkt
mit eventuell problematischen Situatio-
nen, die während der Entwicklung zurück-
gestellt wurden, um zunächst den generel-
len Ablauf sicherzustellen.

Das vom Illinois Institute of Techno-
logie entwickelte Test Maturity Model
(TMM) sieht diese Strategie sehr zu
Unrecht als „TMM Level 1” an – als
Ausgangszustand, den es zu überwinden
gilt (siehe [IIT]). Die Test&Tune-Strategie
ist aber unverzichtbar, vor allem wenn
man bedenkt, dass ca. 75% des gesamten
Codes sich damit beschäftigen, auf
Ausnahme- und Fehlersituationen zu rea-
gieren, und nur die übrigen 25% die
eigentliche Verarbeitung enthalten (man-
che Schätzungen geben sogar nur 10%
Verarbeitungscode an). Gerade diese
Behandlung von Ausnahme- und
Fehlersituationen lässt sich am besten mit
Versuch, Irrtum, Korrektur und neuem
Versuch entwickeln.

Die Entwickler sollten gezielt in Test-
praktiken geschult werden um ihre
Test&Tune-Fähigkeiten zu verbessern. Bei
kritischen Abläufen muss natürlich mehr
getan werden als Test&Tune.

Testen durch Benutzen
Eine der ergiebigsten Teststrategien ist
„Testen durch Benutzen”. Diese Strategie
ist insbesondere dazu geeignet, inhaltliche
Aspekte und „weiche” Qualitätsmerkmale
abzuprüfen.

Wenn die Korrektheit und Robustheit
der Software einigermaßen sichergestellt
sind, muss die Software benutzt werden.
Nur so lassen sich die wichtigsten Fragen,
die sich in einem adaptiven Entwicklungs-
prozess stellen, beantworten:

■ Ist die Software wirklich nützlich? Wie
könnte die Nützlichkeit verbessert
werden? Welche Funktionalität fehlt,

Abb. 3: Aufgabenverteilung beim Testen

Programm tatsächlich als Benutzer erlebt.
Ein weiterer Effekt ist, dass die
Benutzerdokumentation dann mit höherer
Wahrscheinlichkeit die Fragen behandelt,
die den Benutzer interessieren.

Wichtige Voraussetzung beim „Testen
durch Dokumentieren” ist, dass die
Dokumentation nicht einfach aus der
Aufgabenbeschreibung oder anderen Ana-
lysedokumenten abgeleitet wird. Die
Verfasserin oder der Verfasser sollten sich
vielmehr bei jedem Satz fragen
„Funktioniert das wirklich so, wie ich das
hier beschreibe?” und Abläufe durchspie-
len können. Dazu gehört unter anderem,
dass sie eine lauffähige Version der
Software zur Verfügung haben und nicht
nur mit Screenshots arbeiten müssen. Sie
sollten Probleme erkennen können und
ihnen nachgehen dürfen. Außerdem soll-
ten sie neben dem direkten Draht zu den
Entwicklern Gewicht und Stimme bei der
Bewertung des von ihnen dokumentierten
Programms haben. Es müssen also
Personen sein, die sich auch zu sagen trau-
en, dass man als Shortcut für die
Kopierfunktion doch besser das allgemein
übliche Strg+C nehmen sollte.

Eingebettete Tests
Viele Tests lassen sich direkt in den
Quellcode einbetten. In den modernen
Programmiersprachen stehen ASSERT-
Anweisungen oder ähnliches zur Ver-
fügung, mit denen sich die Eingangs-
bedingungen einer Funktion oder einer
Klassenmethode abprüfen lassen. Dieses
Konzept ist als Design by Contract aus der
Sprache Eiffel bekannt. Dort ist es direkt
in die Sprache integriert.

In den meisten Programmiersprachen
lassen sich zumindest die Vorbedingungen
ohne große Probleme auswerten. ASSERT-
Anweisungen oder simple IF-Anweisungen
zu Beginn einer Methode stellen sicher,
dass alle Voraussetzungen für den Start
der Methode vorliegen. Die Abprüfung
der Vorbedingungen (die Default-Einstel-
lung beim Eiffel-Compiler) reicht für unse-
re Testzwecke aus. Wenn die Nachbe-
dingungen einer Methode bzw. die
Invarianten der Klasse nicht stimmen, fällt
dies spätestens dann auf, wenn sie als
Vorbedingungen einer Folgemethode
abgeprüft werden. Sollten bestimmte
Nachbedingungen oder Invarianten nir-
gends als Vorbedingungen benötigt wer-
den, sind sie vermutlich nicht so wichtig.
Ein sorgfältiges Abprüfen der Vorbe-
dingungen aller Funktionen oder Metho-
den kommt einem permanenten Regres-

www.s igs-datacom.de3/2003

schwerpunkt
r a p i d a p p l i c a t i o n t e s t i n g

sionstest gleich. Testtreiber müssen dann
nur noch dafür sorgen, dass alle zu testen-
den Funktionen aufgerufen werden. Die
Rückgabewerte werden vom Testtreiber
protokolliert oder ausgeworfene Excep-
tions werden abgefangen. In einer objekt-
orientierten Programmiersprache können
solche Testtreiber als Testcode-Methode in
der Klasse selbst abgelegt werden. Das hat
den großen Vorteil, dass der zu testende
Code und der dazu passende Testtreiber
ohne zusätzlichen Aufwand gemeinsam
verwaltet werden können, da sie sich an
einer gemeinsamen physischen Stelle –
meistens eine einzelne Quellcode-Datei –
befinden. Dieses One-Source-Prinzip hat
sich bei der Dokumentation bewährt und
ist auch bei Code und Treibern zumindest
von Unit-Tests sinnvoll.

Test-Automatisierung
Test-Automatisierung ist nicht grundsätz-
lich abhängig vom Einsatz teurer
Werkzeuge. Vieles kann durch eingebette-
te Tests (siehe oben) automatisch abge-
prüft werden. Test-Frameworks, mit
denen sich Unit-Tests programmieren und
verwalten lassen, können kostenlos aus
dem Internet heruntergeladen werden (sie-
he [xPr]). Skripte lassen sich auch mit
Werkzeugen und Skriptsprachen erstellen,
die vom Betriebssystem bereitgestellt wer-
den oder als freie Software im Internet ver-
fügbar sind.

Das Erstellen von automatischen Tests
bedeutet allerdings zunächst einmal einen
erhöhten Zeitaufwand. Die zu bewältigen-
de Lernkurve darf nicht unterschätzt wer-
den. Wenn nur wenig Zeit zum Testen
bleibt, ist es keine gute Idee, auf Test-
Automatisierung zu setzen. Machen Sie
Ihre ersten Automationserfahrungen am
besten in frühen Projektphasen oder in
zeitlich entspannten Projekten (falls es so
etwas gibt) und stellen Sie sich auf eine
langsame, kontinuierliche Verbesserung
Ihres Automationskonzepts ein. Automa-
tisieren Sie zunächst nur einfache, aber
wichtige Tests. Oder automatisieren Sie
nur Teile des Testablaufs, wie die
Bereitstellung der notwendigen Testumge-
bung. Im Laufe der Zeit werden Sie mit
zunehmender Erfahrung auch komplexere
Testszenarien automatisieren können.

Testorientiertes
Anwendungsdesign
Hier sind vor allem die Softwaredesigner
und Architekten gefragt. Die Testbarkeit
von Software muss in viel stärkerem Maße

in der Softwarearchitektur selbst berück-
sichtigt werden. Wenn eine Anwendung
sich unkooperativ verhält, kann das beste
Test-Tool nicht viel ausrichten. Test-
orientiertes Anwendungsdesign heißt:

■ die gesamte Anwendung ohne Ober-
fläche steuerbar zu machen,

■ Funktionen vorzusehen, die einem
Testwerkzeug oder einem Testskript
zur Laufzeit die notwendigen Informa-
tionen liefern,

■ Selbsttests während des Ablaufs vor-
zusehen,

■ allgemein übliche Datenformate zu
verwenden, die von verschiedensten
Werkzeugen verstanden werden,

■ die Anwendung in Komponenten auf-
zuteilen, die über protokollierbare
Nachrichten miteinander kommuni-
zieren,

■ Einschübe (Add-Ins) und Verzwei-
gungen (Hooks) vorzusehen, die einem
Diagnosewerkzeug die Beobachtung
des Programmablaufs ermöglichen,

■ den Aspekt der Testbarkeit ständig im
Auge zu behalten und neue Ideen dazu
zu entwickeln.

Gut Ding will Weile haben
Ziel des Rapid Application Testing ist es,
die schwerwiegendsten Fehler möglichst
schnell zu finden. Heißt Rapid
Application Testing deshalb, dass Pro-
grammsituationen und Fehlern, die nur
lästig, unnötig oder unschön sind, nicht
mehr nachgegangen wird? Dass Fehler auf
ewige Zeiten im Programm verbleiben,
nur weil sie nicht ganz so kritisch sind?
Dass sich niemand mit Schreibfehlern in
den Bildschirmformularen aufhalten soll?

Das heißt es natürlich nicht. Rapid
Application Testing sagt nur, worauf man
beim Testen zuerst achten sollte, und nicht,
dass man mit dem Bemühen um mehr
Qualität aufhören sollte, wenn alle Fehler
der Kategorien „Absturz” und „Work-
Around erforderlich” gefunden sind. Die
wesentlichen Ideen des Rapid Application
Testing – wie Zielorientierung und
Vertrauen auf die Kreativität, das Können
und die Erfahrung der Beteiligten, statt
Beharren auf formalen Abläufen – sind
auch zum Aufspüren von Fehlern, die nur
lästig sind, sinnvoll anwendbar. Gerade die
Hemmnisse im Fluss des Arbeitsablaufs,
die Widersprüche im Look&Feel,
Schönheitsfehler und wenig elegant wir-
kende Dialoge können kaum durch vorge-
fertigte Testfälle gefunden werden.

Man sollte sich allerdings von der Vor-
stellung lösen, dass diese Ziele ähnlich
rapide erreicht werden können wie das
Auffinden der schwerwiegendsten Fehler.
Es gibt eben Dinge, die Zeit brauchen.
Dazu gehört unter anderem, eine Software
rund und glatt werden zu lassen.

Rapid Application Testing kann also nur
heißen, die Software marktfähig zu
machen. Dass nicht alle Software, die auf
den Markt kommt, schon rund, glatt oder
gar ausgereift ist – und dass sie das auch
gar nicht sein kann und muss – brauche ich
Ihnen wahrscheinlich nicht zu erzählen.

Alle Test- und Prüfverfahren können
nur feststellen, ob ein Produkt von hoher
Qualität ist oder welche Qualitätsmängel
es aufweist. Qualität herstellen können sie
nicht. Deshalb müssen die Vorgehens-
weisen bei der Erstellung der Produkte
und die Test- und Prüfverfahren einander
ergänzen. Im Idealfall unterstützt die
Vorgehensweise bei der Erstellung eines
Produkts gleichzeitig eine Prüfung der
Qualität aller in das Produkt einfließenden
Vorprodukte. Das hört sich schwieriger
an, als es ist. Was Sie hierfür brauchen,
sind engagierte und interessierte Mitar-
beiter, eine offene Diskussionskultur im
Projekt und schließlich ein einfacher
Prozess, der unnötige Formalismen ver-
meidet und jederzeit Änderungen an sei-
nen Ergebnissen zulässt. ■

Literatur & Links
[Bac] J. Bach (Satisfice Inc.), diverse Artikel

zum Thema Rapid Testing, siehe: www.

satisfice.com

[Coc02] A. Cockburn, games programmers

play, in: Software Development, February

2002

[Fow01] M. Fowler, J. Highsmith, The Agile

Manifesto, in: Software Development,

August 2001

[IIT] Illinois Insitute of Technologie

(Herausgeber des „Test Maturity Model”

(TMT)), siehe: www.iit.edu

[Kan02] C. Kaner, J. Bach, B. Pettichord,

Lessons Learned in Software Testing, Wiley,

2002

[Rät02] M. Rätzmann, Software-Testing,

Galileo Computing, 2002

[xPr] Sammelseite zum Herunterladen von

xUnit-Test-Frameworks: www.xprogramming.

com/software.htm

