12

mehr zum thema:
www.stickyminds.com
www.satisfice.com

» rapid application testing

von manfred rdtzmann

,,RAPID APPLICATION TESTING™

Nicht nur die Anforderungen der Kunden, auch die technischen Méglichkeiten, das Aussehen
der Programme und die Art, wie Mensch und Software zueinander finden, sind einem standi-
gen Wandel unterzogen. Das Testen von Software kann davon nicht unberiihrt bleiben. Der
Artikel beschreibt Mdglichkeiten, auch im Testprozess auf sich sténdig &ndernde Anforderun-
gen und die in der Praxis Ubliche Zeit- und Ressourcenknappheit zu reagieren.

Agile Prozesse sind gefragt, also Prozesse,
die auf Anderungen schnell reagieren und
die dazu mehr auf Kommunikation,
Selbstorganisation und Auslieferung real
existierender Software setzen als auf
Planung, Uberwachung und Dokumen-
tation des Herstellungsprozesses (vgl.
[Fow01]). Alistair Cockburn beschreibt
Softwareentwicklung als Spiel in einer
Gruppe, das zielorientiert, zeitlich und
inhaltlich abgegrenzt und kooperativ
ablauft (vgl. [Coc02]).

Die Regeln des Spiels zwischen
Software-Entwickler und -Tester sind ein-
fach: Die Tester versuchen, so schnell wie
moglich die wichtigsten Fehler zu finden,
das heiflt nachzuweisen, dass das Pro-
gramm unter bestimmten Vorausset-
zungen versagt. Deutlichstes Zeichen fur
ein Versagen ist der gemeine Absturz: eine
allgemeine Schutzverletzung oder ein
Einfrieren (,,Nichts geht mehr”) des
Programms. In diesem Sinne kann man
Rapid Application Testing durchaus als
die Kunst bezeichnen, ein Programm zum
Absturz zu bringen.

Das Versagen eines Programms zeigt sich
nicht immer so krass wie bei einem Absturz.
Subtilere Versager sind Ablauf- oder
Ausgabefehler, Rechenfehler, Benutz-
barkeitsprobleme bis hin zu tbergrofer
Sorglosigkeit im Umgang mit vertraulichen
Daten. Da nicht alle Fehler gleich wichtig
sind, sollte eine Rangfolge der
Fehlergewichtung zu den bekannt gegebe-
nen Spielregeln z&hlen. Hier ein Vorschlag,
wie sich die Fehler in der Rangfolge ihrer
Wichtigkeit — ausgerichtet an der
Benutzbarkeit der Software — staffeln lassen:

m Fehler, die eine vorgesehene Benutzung
unmdoglich machen,

m Fehler, die dazu fiihren, dass eine vor-
gesehene Benutzung nur auf Umwegen
maoglich ist,

m Fehler, die einen l&stigen und unnoti-
gen Mehraufwand bei der Benutzung
des Programms verursachen und

m Fehler, die das Erscheinungsbild der
Software beeintrachtigen.

Benutzung bedeutet hier immer den ge-
samten Umgang mit dem Programm, also
auch Installieren und Administrieren.

Letztendlich wird diese Rangfolge der
Wichtigkeit aber von den Zielen des
Projekts und den an diesen Zielen interes-
sierten Personen (Stakeholder) festgelegt.
So kdnnen zum Beispiel in einer Konkur-
renzsituation, in der es entscheidend auf
das Aussehen der Software ankommt — ob
diese also jugendlich oder serids, frech
oder abgeklart, unterhaltsam oder kompe-
tent wirkt — Unstimmigkeiten im Erschei-
nungsbild viel wichtiger sein als fehlende
Funktionalitat.

Das Rapide am

,»Rapid Application Testing”
Die Grundlage der Testplanung und aller
Testmetriken war lange Zeit die funktio-
nale Uberdeckung und die Anweisungs-
Uberdeckung. Nachdem man eingesehen
hatte, dass man nicht alles testen kann,
wurden Methoden zur Aufdeckung von
Redundanzen innerhalb der Testfélle und
der Testdaten entwickelt und auBerdem
Methoden zur Bewertung der Risiken, die
man eingeht, wenn bestimmte Teile der
Software weniger intensiv getestet werden
als andere.

Ziel des Rapid Application Testing ist
es, die schwerwiegendsten Fehler mdg-
lichst schnell zu finden. Deshalb heif3t das
Vorgehen auch ,,Rapid Application
Testing” und nicht etwa ,Total
Application Testing”. Alle Fehler zu fin-
den, kann ebenfalls ein interessantes Spiel
sein —die Frage ist allerdings meistens, wer
die Kosten dafur tbernimmt.

James Bach, Inhaber der Firma Satisfice
(vgl. [Bac]), propagiert ,,Rapid Testing”
flr externe Tester. Seine Beschreibung des
Rapid Testing beginnt mit den unten auf-
gefuhrten Erkenntnissen zu Mission, Kén-
nen, Risiko und Erfahrung beim Testen

'

Manfred Ratzmann

(E-Mail: m.raetzmann@raetzmann-
gmbh.de) ist Softwareentwickler und
Berater mit den Schwerpunkten
Testtechniken, Anwendungsdesign,
Komponentenbau und Framework-
Entwicklung. Er ist Autor des Buches
,,.Software Testing” ([Rat02]).

von Software. Rapid Application Testing
Ubernimmt und erweitert diesen Ansatz
fur die Testverfahren des Entwicklungs-
teams selbst. Es unterscheidet sich vom
herkdmmlichen formalen Testansatz
hauptséchlich in den folgenden Punkten:

Mission

Rapid Application Testing beginnt nicht
mit einer Aufgabe wie ,,Erstelle die Test-
falle”, sondern mit einer Mission, zum
Beispiel: ,,Finde die wichtigsten Fehler
schnell.” Welche Aufgaben zur Erfullung
der Mission zu erledigen sind, hdngt vom
Inhalt der Mission ab. Keine der im for-
malen Testansatz als notwendig erachteten
Tatigkeiten gilt als unverzichtbar, alle
Tatigkeiten muissen ihre Nutzlichkeit in
Bezug auf die Mission nachweisen.

Koénnen

Der herkdmmliche formale Testansatz
bewertet die Bedeutung des Kdnnens, des
Wissens und der Fertigkeiten der Testerin
oder des Testers zu niedrig. Rapid Appli-
cation Testing erfordert Wissen um den
Testgegenstand und die mdglichen Probleme
beim Einsatz ebenso wie die Fahigkeit, logi-
sche Schlussfolgerungen zu ziehen und aus-
sagekréftige Versuche zu entwickeln.

Risiko

Der herkdmmliche Testansatz strebt eine
maoglichst hohe funktionale und strukturel-
le Uberdeckung an. Rapid Application
Testing zielt auf die wichtigsten Probleme
zuerst. Dazu wird zunéchst ein Verstandnis
dessen, was passieren kann, und welche
Auswirkungen es hat, wenn es passiert,
erarbeitet. AnschlieRend werden die mogli-

www.objektspektrum.de

3/2003

rapid application testing

e |

lteration 1 ... N |

Erstellen

Analyse

Implementierung

Integration \

A0

Geschaftsmodell

Anwendungsfalle

N N

|

\ |

N==n

[t 2
e

/

Abb. 1: Produkte werden mit Prifmethoden verknlpft

cherweise problematischen Punkte in der
Reihenfolge ihrer Wichtigkeit abgepruft.

Erfahrung

Um auch beim Testen nicht in einer
Analyse-Paralyse zu verharren, sollen die
Tester ihren Erfahrungen vertrauen.
Wahrend beim herkémmlichen formalen
Testansatz die Erfahrungen der Tester meist
unbewusst und damit auch ungeprift ein-
flieBen, sollen die Tester beim Rapid-
Application-Testing-Ansatz ihre Erfah-
rungen sammeln, festhalten und durch
bewussten Einsatz iberprifen. Dazu dienen
ein Gespur fur Fehler und Schwachstellen
(Error-Guessing) genauso wie Aussagen zu
Fehlerh&ufungen und Fehlerfindungsraten,
die aus Bug-Tracking-Systemen gewonnen
werden.

Flexibilitat

Rapid Application Testing ist nicht an vor-
gegebene Testpldne und Testprozeduren
gebunden. Die Ergebnisse der durchgefihr-
ten Tests haben einen weit reichenden
Einfluss auf die noch auszufiihrenden Tests.
So dringt Rapid Application Testing schnel-
ler zu den Kernproblemen der Software vor
als vorgeschriebenes (scripted) Testen.

Integration

Rapid Application Testing ist integriertes
Testen, d.h. es ist in den Softwareent-
wicklungsprozess integriert und nicht ein

Black-Box

Abb. 2: Gray Box Testing

Gray-Box

zweiter, nebenher laufender Software-
Validierungsprozess. Alle konstruktiven
Mafinahmen sollen einen Doppelnutzen
hervorbringen. Doppelnutzen bedeutet
eine Tatigkeit so auszufihren, dass neben
dem hauptsachlichen ersten ein zweiter
Nutzen entsteht — in diesem Fall der
Nutzen der permanenten Qualitats-
sicherung und Qualitatskontrolle.

Produktorientierung

Das klassische Testplanungsmodell orien-
tiert sich am Herstellungsprozess der Soft-
ware und leitet daraus die Testphasen ab.
Rapid Application Testing orientiert sich
dagegen an den hergestellten Produkten
oder Zwischenprodukten.

Produkte des Softwareentwicklungs-
prozesses entstehen, wenn sie gebraucht
werden. Wenn sie entstanden sind, werden
sie sofort gepruft. Jedes Produkt wird
dabei einer expliziten oder einer implizi-
ten Prufung unterworfen: explizit durch
Prufverfahren, die auf die spezielle Art von
Produkt zugeschnitten sind, und implizit
durch kritische Nutzung der entstehenden
Produkte im weiteren Entwicklungs-
prozess. Abbildung 1 stellt die Verknlp-
fung von Produkten des Entwicklungspro-
zesses mit spezifischen Prufverfahren dar.

Teamwork
Rapid Application Testing erfolgt im
Wesentlichen ,,zwischendurch™. Erstel-

White-Box

lungs- und Testphasen wechseln sich ab,
gesteuert durch die Verfugbarkeit einzel-
ner Produkte oder Zwischenprodukte im
Entwicklungsprozess. ,, Tester sein” wird
als Rolle betrachtet, die von einzelnen
Personen je nach Bedarf eingenommen
wird. Alle diese Personen sind darauf
angewiesen, schnell zum Thema zu kom-
men. Die formalen Anforderungen an
Testprozeduren, die bei gut ausgestatteten
und zeitlich entspannten Projekten durch-
aus sinnvoll sein kénnen, sind hier eher
hinderlich.

Pragmatismus

Rapid Application Testing ist Gray-Box
Testing. Dieses besteht aus Methoden und
Werkzeugen, die Kenntnisse der internen
Applikationsstrukturen benutzen, um
Black-Box-Testfélle zu planen und durch-
zufiihren (siehe Abb. 2). Formale Differen-
zierungen zwischen Funktions- und Struk-
turtests sind zweitrangig. Alles, was hilft
die wichtigsten Fehler schnell zu finden, ist
erlaubt. Auch Test-Automatisierung wird
nicht als Ziel, sondern als Mittel betrach-
tet, das seine Nutzlichkeit nachweisen
muss. Das Ziel ist funktionierende Soft-
ware.

Kundenbeteiligung

Rapid Application Testing ist verteiltes
Testen. Vertreter des Kunden, des Auf-
traggebers oder Anwendervertreter wer-
den an Test- und PrifmaBnahmen betei-
ligt. Sie Ubernehmen insbesondere
fachliche Tests und Benutzbarkeits-
prufungen. Kurze Iterationen und ein per-
manenter Dialog zwischen externen
Testern und dem Entwicklungsteam inte-
grieren auch externe Tester in den
Entwicklungsprozess. Abbildung 3 zeigt
eine sinnvolle Verteilung von Aufgaben
oder Verantwortlichkeiten beim Testen.

Teststrategien

Testen und Verbessern

Die am weitesten verbreitete Strategie
beim Testen innerhalb des Entwicklungs-
prozesses ist wohl Testen und gleichzeiti-
ges Verbessern von Software (Test&Tune).
Testen und Beheben der gefundenen Fehler
sind in dieser Strategie nicht voneinander
getrennt, vielmehr wird Testen als not-
wendige Vorarbeit betrachtet, um die
Dinge im Programm nachbessern zu kon-
nen, die noch nicht richtig laufen. Testen
und Verbessern ist in dieser Form eine rei-
ne Entwicklerstrategie. Vor der Freigabe
eines Programmteils probieren der
Entwickler oder die Entwicklerin aus, ob »

www.sigs-datacom.de

14

» rapid application testing

/ Aufgabenverteilung
—_— E—
-+ .
Entwickler Architekt Anwender
Unit Tests Integrations- und Fachliche Tests,
Systemtests

\

Benutzbarkeit /

Abb. 3: Aufgabenverteilung beim Testen

alles glatt lauft, und Kkorrigieren dabei
sofort die gefundenen Fehler. In dieser
Phase beschéftigen sie sich auch verstarkt
mit eventuell problematischen Situatio-
nen, die wéhrend der Entwicklung zurick-
gestellt wurden, um zunédchst den generel-
len Ablauf sicherzustellen.

Das vom lllinois Institute of Techno-
logie entwickelte Test Maturity Model
(TMM) sieht diese Strategie sehr zu
Unrecht als ,,TMM Level 1” an - als
Ausgangszustand, den es zu Uberwinden
gilt (siehe [1IT]). Die Test& Tune-Strategie
ist aber unverzichtbar, vor allem wenn
man bedenkt, dass ca. 75% des gesamten
Codes sich damit beschéaftigen, auf
Ausnahme- und Fehlersituationen zu rea-
gieren, und nur die Ubrigen 25% die
eigentliche Verarbeitung enthalten (man-
che Schétzungen geben sogar nur 10%
Verarbeitungscode an). Gerade diese
Behandlung von Ausnahme- und
Fehlersituationen l&sst sich am besten mit
Versuch, Irrtum, Korrektur und neuem
Versuch entwickeln.

Die Entwickler sollten gezielt in Test-
praktiken geschult werden um ihre
Test&Tune-Fahigkeiten zu verbessern. Bei
kritischen Ablaufen muss natirlich mehr
getan werden als Test& Tune.

Testen durch Benutzen

Eine der ergiebigsten Teststrategien ist
,, Testen durch Benutzen”. Diese Strategie
ist insbesondere dazu geeignet, inhaltliche
Aspekte und ,,weiche” Qualitatsmerkmale
abzuprifen.

Wenn die Korrektheit und Robustheit
der Software einigermafen sichergestellt
sind, muss die Software benutzt werden.
Nur so lassen sich die wichtigsten Fragen,
die sich in einem adaptiven Entwicklungs-
prozess stellen, beantworten:

m |Ist die Software wirklich niitzlich? Wie
koénnte die Niutzlichkeit verbessert
werden? Welche Funktionalitat fehlt,

um die Sache richtig rund zu machen?

m Werden alle oder zumindest die wich-
tigsten Arbeitsablaufe von der Soft-
ware unterstutzt? Fordert das Pro-
gramm den Fluss der Arbeit oder
behindert es ihn?

m Erkennen die Benutzer der Software
sich und ihr Arbeitsgebiet wieder?
Stimmen die Fachausdrucke, stimmen
die Abstraktionen?

m Macht es Spal, mit der Software zu
arbeiten, oder ist es eher ,,atzend” und
lastig? Flhlen die Benutzer sich tber-
fordert oder langweilen sie sich?

Projektintern kénnen Sie auf Modul- oder
Komponentenebene die ,,Testen durch
Benutzen”-Strategie ebenfalls anwenden.
Durch Modularisierung, Schichten- oder
Komponentenarchitektur wird die Situa-
tion des Benutzens bereits in den Ent-
wicklungsprozess eingebaut und entsteht
nicht erst an dessen Ende, wenn alles fertig
ist. Die Module, Komponenten, Klassen
oder Funktionen des einen Entwicklers
sollen vom anderen Entwickler genutzt
werden, am besten ohne Blick in den
Quellcode.

Es wird zwar manchmal gefordert, dass
der Quellcode allen Entwicklern ,,geho-
ren” soll, sprich, dass sich alle Entwickler
im Quellcode &hnlich gut auskennen sol-
len. Im Hinblick auf das ,,Testen durch
Benutzen” ist es aber besser, wenn sich die
Kenntnis auf die Schnittstellen, auf die
Problembeschreibung und auf den allge-
meinen Ldsungsansatz beschrénkt.

Testen durch Dokumentieren

Auch das Verfassen der Benutzerdoku-
mentation ist eine Mdoglichkeit, ,, Testen
durch Benutzen” einzusetzen. Die
Benutzerdokumentation wird dann nicht
vom Entwickler erstellt — zumindest nicht
vom Entwickler des beschriebenen
Programmteils — sondern von einer
Person, die das zu beschreibende

Programm tatséchlich als Benutzer erlebt.
Ein weiterer Effekt ist, dass die
Benutzerdokumentation dann mit héherer
Wabhrscheinlichkeit die Fragen behandelt,
die den Benutzer interessieren.

Wichtige Voraussetzung beim ,,Testen
durch Dokumentieren” ist, dass die
Dokumentation nicht einfach aus der
Aufgabenbeschreibung oder anderen Ana-
lysedokumenten abgeleitet wird. Die
Verfasserin oder der Verfasser sollten sich
vielmehr bei jedem Satz fragen
,,Funktioniert das wirklich so, wie ich das
hier beschreibe?”” und Ablaufe durchspie-
len kénnen. Dazu gehort unter anderem,
dass sie eine lauffahige Version der
Software zur Verfligung haben und nicht
nur mit Screenshots arbeiten mussen. Sie
sollten Probleme erkennen kdnnen und
ihnen nachgehen diirfen. AulRerdem soll-
ten sie neben dem direkten Draht zu den
Entwicklern Gewicht und Stimme bei der
Bewertung des von ihnen dokumentierten
Programms haben. Es miuissen also
Personen sein, die sich auch zu sagen trau-
en, dass man als Shortcut fir die
Kopierfunktion doch besser das allgemein
Ubliche Strg+C nehmen sollte.

Eingebettete Tests

Viele Tests lassen sich direkt in den
Quellcode einbetten. In den modernen
Programmiersprachen stehen ASSERT-
Anweisungen oder &hnliches zur Ver-
figung, mit denen sich die Eingangs-
bedingungen einer Funktion oder einer
Klassenmethode abprifen lassen. Dieses
Konzept ist als Design by Contract aus der
Sprache Eiffel bekannt. Dort ist es direkt
in die Sprache integriert.

In den meisten Programmiersprachen
lassen sich zumindest die Vorbedingungen
ohne grofle Probleme auswerten. ASSERT-
Anweisungen oder simple IF-Anweisungen
zu Beginn einer Methode stellen sicher,
dass alle Voraussetzungen fur den Start
der Methode vorliegen. Die Abpriifung
der Vorbedingungen (die Default-Einstel-
lung beim Eiffel-Compiler) reicht fir unse-
re Testzwecke aus. Wenn die Nachbe-
dingungen einer Methode bzw. die
Invarianten der Klasse nicht stimmen, fallt
dies spatestens dann auf, wenn sie als
Vorbedingungen einer Folgemethode
abgepruft werden. Sollten bestimmte
Nachbedingungen oder Invarianten nir-
gends als Vorbedingungen benétigt wer-
den, sind sie vermutlich nicht so wichtig.
Ein sorgféltiges Abpriufen der Vorbe-
dingungen aller Funktionen oder Metho-
den kommt einem permanenten Regres-

www.objektspektrum.de

rapid application testing

sionstest gleich. Testtreiber mussen dann
nur noch dafiir sorgen, dass alle zu testen-
den Funktionen aufgerufen werden. Die
Ruckgabewerte werden vom Testtreiber
protokolliert oder ausgeworfene Excep-
tions werden abgefangen. In einer objekt-
orientierten Programmiersprache kénnen
solche Testtreiber als Testcode-Methode in
der Klasse selbst abgelegt werden. Das hat
den grofRen Vorteil, dass der zu testende
Code und der dazu passende Testtreiber
ohne zusétzlichen Aufwand gemeinsam
verwaltet werden konnen, da sie sich an
einer gemeinsamen physischen Stelle —
meistens eine einzelne Quellcode-Datei —
befinden. Dieses One-Source-Prinzip hat
sich bei der Dokumentation bewaghrt und
ist auch bei Code und Treibern zumindest
von Unit-Tests sinnvoll.

Test-Automatisierung
Test-Automatisierung ist nicht grundsétz-
lich abhangig vom Einsatz teurer
Werkzeuge. Vieles kann durch eingebette-
te Tests (siehe oben) automatisch abge-
prift werden. Test-Frameworks, mit
denen sich Unit-Tests programmieren und
verwalten lassen, kdnnen kostenlos aus
dem Internet heruntergeladen werden (sie-
he [xPr]). Skripte lassen sich auch mit
Werkzeugen und Skriptsprachen erstellen,
die vom Betriebssystem bereitgestellt wer-
den oder als freie Software im Internet ver-
fugbar sind.

Das Erstellen von automatischen Tests
bedeutet allerdings zunéchst einmal einen
erhdhten Zeitaufwand. Die zu bewéltigen-
de Lernkurve darf nicht unterschatzt wer-
den. Wenn nur wenig Zeit zum Testen
bleibt, ist es keine gute ldee, auf Test-
Automatisierung zu setzen. Machen Sie
lhre ersten Automationserfahrungen am
besten in frihen Projektphasen oder in
zeitlich entspannten Projekten (falls es so
etwas gibt) und stellen Sie sich auf eine
langsame, kontinuierliche Verbesserung
lhres Automationskonzepts ein. Automa-
tisieren Sie zunachst nur einfache, aber
wichtige Tests. Oder automatisieren Sie
nur Teile des Testablaufs, wie die
Bereitstellung der notwendigen Testumge-
bung. Im Laufe der Zeit werden Sie mit
zunehmender Erfahrung auch komplexere
Testszenarien automatisieren konnen.

Hier sind vor allem die Softwaredesigner
und Architekten gefragt. Die Testbarkeit
von Software muss in viel starkerem Mafle

in der Softwarearchitektur selbst bertick-
sichtigt werden. Wenn eine Anwendung
sich unkooperativ verhalt, kann das beste
Test-Tool nicht viel ausrichten. Test-
orientiertes Anwendungsdesign heif3t:

= die gesamte Anwendung ohne Ober-
flache steuerbar zu machen,

m Funktionen vorzusehen, die einem
Testwerkzeug oder einem Testskript
zur Laufzeit die notwendigen Informa-
tionen liefern,

m Selbsttests wahrend des Ablaufs vor-
zusehen,

m allgemein Ubliche Datenformate zu
verwenden, die von verschiedensten
Werkzeugen verstanden werden,

= die Anwendung in Komponenten auf-
zuteilen, die Uber protokollierbare
Nachrichten miteinander kommuni-
zieren,

m Einschiibe (Add-Ins) und Verzwei-
gungen (Hooks) vorzusehen, die einem
Diagnosewerkzeug die Beobachtung
des Programmablaufs ermdglichen,

m den Aspekt der Testbarkeit stdndig im
Auge zu behalten und neue Ideen dazu
zu entwickeln.

Ziel des Rapid Application Testing ist es,
die schwerwiegendsten Fehler méglichst
schnell zu finden. Heillit Rapid
Application Testing deshalb, dass Pro-
grammsituationen und Fehlern, die nur
lastig, unndtig oder unschon sind, nicht
mehr nachgegangen wird? Dass Fehler auf
ewige Zeiten im Programm verbleiben,
nur weil sie nicht ganz so kritisch sind?
Dass sich niemand mit Schreibfehlern in
den Bildschirmformularen aufhalten soll?

Das heit es naturlich nicht. Rapid
Application Testing sagt nur, worauf man
beim Testen zuerst achten sollte, und nicht,
dass man mit dem Bemihen um mehr
Qualitat aufhdren sollte, wenn alle Fehler
der Kategorien ,,Absturz”” und ,,Work-
Around erforderlich” gefunden sind. Die
wesentlichen Ideen des Rapid Application
Testing — wie Zielorientierung und
Vertrauen auf die Kreativitat, das Kénnen
und die Erfahrung der Beteiligten, statt
Beharren auf formalen Ablaufen - sind
auch zum Aufspuren von Fehlern, die nur
lastig sind, sinnvoll anwendbar. Gerade die
Hemmnisse im Fluss des Arbeitsablaufs,
die Widerspriche im Look&Feel,
Schonheitsfehler und wenig elegant wir-
kende Dialoge kénnen kaum durch vorge-
fertigte Testfélle gefunden werden.

Man sollte sich allerdings von der Vor-
stellung l6sen, dass diese Ziele &hnlich
rapide erreicht werden kdnnen wie das
Auffinden der schwerwiegendsten Fehler.
Es gibt eben Dinge, die Zeit brauchen.
Dazu gehort unter anderem, eine Software
rund und glatt werden zu lassen.

Rapid Application Testing kann also nur
heillen, die Software marktfahig zu
machen. Dass nicht alle Software, die auf
den Markt kommt, schon rund, glatt oder
gar ausgereift ist — und dass sie das auch
gar nicht sein kann und muss — brauche ich
Ihnen wahrscheinlich nicht zu erzéhlen.

Alle Test- und Prufverfahren koénnen
nur feststellen, ob ein Produkt von hoher
Qualitét ist oder welche Qualitatsmangel
es aufweist. Qualitat herstellen kénnen sie
nicht. Deshalb mussen die Vorgehens-
weisen bei der Erstellung der Produkte
und die Test- und Prufverfahren einander
ergadnzen. Im Idealfall unterstitzt die
Vorgehensweise bei der Erstellung eines
Produkts gleichzeitig eine Prifung der
Quialitét aller in das Produkt einflieenden
Vorprodukte. Das hort sich schwieriger
an, als es ist. Was Sie hierfur brauchen,
sind engagierte und interessierte Mitar-
beiter, eine offene Diskussionskultur im
Projekt und schliellich ein einfacher
Prozess, der unnotige Formalismen ver-
meidet und jederzeit Anderungen an sei-
nen Ergebnissen zuldsst.]

J. Bach (Satisfice Inc.), diverse Artikel
zum Thema Rapid Testing, siehe: www.
satisfice.com

A. Cockburn, games programmers
play, in: Software Development, February
2002

M. Fowler, J. Highsmith, The Agile
Manifesto, in: Software Development,
August 2001

Illinois Insitute of Technologie
(Herausgeber des ,,Test Maturity Model”
(TMT)), siehe: www.iit.edu

C. Kaner, J. Bach, B. Pettichord,
Lessons Learned in Software Testing, Wiley,
2002

M. Réatzmann, Software-Testing,
Galileo Computing, 2002

Sammelseite zum Herunterladen von
XUnit-Test-Frameworks: www.xprogramming.
com/software.htm

